BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE DEPARTMENT OF BIOTECHNOLOGY SCHEME OF TEACHING AND EXAMINATION

2021-2022

B.E. III SEMESTER

SI. No.	Subject Code	Subject Title		Но	ours/Week	(Examination Marks			
INO.	Code		Credits	Lecture	Tutorial	Practical	CIE	SEE	Total	
		Numerical								
1	UMA392C	Techniques &	3	3	0	0	50	50	100	
		Fourier Series								
2	UBT305C	Biochemistry	3	3	0	0	50	50	100	
3	UBT315C	Bioprocess Principles	3	2	2	0	50	50	100	
3	OBISISC	& Calculations	5	2	2	0	50	50	100	
4	UBT312C	Unit Operations	3	3	0	0	50	50	100	
5	UBT313C	Microbiology	3	3	0	0	50	50	100	
		Cytogenetics and								
6	UBT317C	Cell Culture	3	3	0	0	50	50	100	
		Techniques								
7	UBT307L	Biochemistry Lab	1.5	0	0	3	50	50	100	
8	UBT308L	Microbiology Lab	1.5	0	0	3	50	50	100	
9	UBT311L	Unit Operations Lab	1.0	0	0	2	50	50	100	
10		Samskruthika	1	2	0	0	50	ГO	100	
10	UHS388C	Kannada	1	2	U	U	50	50	100	
		Total	23	19	02	8	500	500	1000	

UMA392C		Credits : 03
L:T:P - 3:0:0	NUMERICAL TECHNIQUES AND FOURIER SERIES	CIE Marks : 50
Total Hours /Week: 03		SEE Marks : 50
	UNIT – 1	10 Hrs.
Numerical Analysis-I:		10 Hours
	ng problems, Bisection Method, Newton-Raphson	
	ference operators (no derivations on relations b	
difference interpolation for	ward interpolation formulae. (Without proof), Lagra	ange's and Newton's divided
	UNIT – 2	10 Hrs.
Numerical Analysis-II:	0001 2	10 Hours
-	using Newton's forward and backward formulae	
	Simpson's three eighth rule and Weddle's rule (no	
•	fied Euler's method, Runge-Kutta 4 th order method.	
	UNIT – 3	10 Hrs.
Fourier series:		10 Hours
Periodic functions, Condition	ons for Fourier series expansions, Fourier series e	xpansion of continuous and
functions having finite num	mber of discontinuities, even and odd functions.	Half-range series, practical
harmonic analysis.		
	UNIT – 4	10 Hrs.
		10 Hrs.
Fourier transforms and z-tra		10 Hours
Infinite Fourier transforms a	and inverse Fourier transforms- simple properties, Fo	10 Hours ourier sine and Fourier cosine
Infinite Fourier transforms a transforms, Inverse Fourier	and inverse Fourier transforms- simple properties, For sine and cosine transforms. Z-transforms-definition	10 Hours Durier sine and Fourier cosine
Infinite Fourier transforms a transforms, Inverse Fourier property, damping rule, shif	and inverse Fourier transforms- simple properties, For sine and cosine transforms. Z-transforms-definition	10 Hours Durier sine and Fourier cosine
Infinite Fourier transforms a transforms, Inverse Fourier property, damping rule, shif Reference Books *	and inverse Fourier transforms- simple properties, For r sine and cosine transforms. Z-transforms-definition fting rule-problems.	10 Hours Durier sine and Fourier cosine Don, standard forms, linearity
Infinite Fourier transforms a transforms, Inverse Fourier property, damping rule, shif Reference Books * 1. Numerical Methods	and inverse Fourier transforms- simple properties, Fo r sine and cosine transforms. Z-transforms-definition fting rule-problems. for Engineers by Steven C Chapra& Raymond P Cana	10 Hours Durier sine and Fourier cosine Don, standard forms, linearity le.
Infinite Fourier transforms a transforms, Inverse Fourier property, damping rule, shif Reference Books * 1. Numerical Methods	and inverse Fourier transforms- simple properties, For r sine and cosine transforms. Z-transforms-definition fting rule-problems.	10 Hours Durier sine and Fourier cosine Don, standard forms, linearity le.
Infinite Fourier transforms a transforms, Inverse Fourier property, damping rule, shif Reference Books * 1. Numerical Methods 2. Higher Engineering N	and inverse Fourier transforms- simple properties, Fo r sine and cosine transforms. Z-transforms-definition fting rule-problems. for Engineers by Steven C Chapra& Raymond P Cana	10 Hours Durier sine and Fourier cosine Don, standard forms, linearity le.
Infinite Fourier transforms a transforms, Inverse Fourier property, damping rule, shif Reference Books * 1. Numerical Methods 2. Higher Engineering N 3. Advanced Engineering	and inverse Fourier transforms- simple properties, Fo r sine and cosine transforms. Z-transforms-definition fting rule-problems. for Engineers by Steven C Chapra& Raymond P Cana Mathematics by Dr. B.S. Grewal, Khanna Publishers, N	10 Hours Durier sine and Fourier cosine Don, standard forms, linearity le.
Infinite Fourier transforms a transforms, Inverse Fourier property, damping rule, shif Reference Books * 1. Numerical Methods 2. Higher Engineering N 3. Advanced Engineering	and inverse Fourier transforms- simple properties, Fo r sine and cosine transforms. Z-transforms-definition fting rule-problems. for Engineers by Steven C Chapra& Raymond P Cana Mathematics by Dr. B.S. Grewal, Khanna Publishers, N ng Mathematics by H. K. Das, S. Chand & company Lte	10 Hours Durier sine and Fourier cosine Don, standard forms, linearity le.
Infinite Fourier transforms a transforms, Inverse Fourier property, damping rule, shif Reference Books * 1. Numerical Methods 2. Higher Engineering N 3. Advanced Engineerin 4. Advanced Engineerin Course Outcomes **	and inverse Fourier transforms- simple properties, Fo r sine and cosine transforms. Z-transforms-definition fting rule-problems. for Engineers by Steven C Chapra& Raymond P Cana Mathematics by Dr. B.S. Grewal, Khanna Publishers, N ng Mathematics by H. K. Das, S. Chand & company Lto ng Mathematics by E Kreyszig (John Wiley & Sons)	10 Hours Durier sine and Fourier cosine Don, standard forms, linearity le.
Infinite Fourier transforms a transforms, Inverse Fourier property, damping rule, shif Reference Books * 1. Numerical Methods 2. Higher Engineering N 3. Advanced Engineerin 4. Advanced Engineerin Course Outcomes **	and inverse Fourier transforms- simple properties, Fo r sine and cosine transforms. Z-transforms-definition fting rule-problems. for Engineers by Steven C Chapra& Raymond P Cana Mathematics by Dr. B.S. Grewal, Khanna Publishers, N ng Mathematics by H. K. Das, S. Chand & company Lto ng Mathematics by E Kreyszig (John Wiley & Sons)	10 Hours Durier sine and Fourier cosine on, standard forms, linearity le. New Delhi. d. Ram Nagar, New Delhi.
Infinite Fourier transforms a transforms, Inverse Fourier property, damping rule, shif Reference Books * 1. Numerical Methods 2. Higher Engineering N 3. Advanced Engineerin 4. Advanced Engineerin Course Outcomes ** After completion of the course 1. Solve engineering proble	and inverse Fourier transforms- simple properties, Fo r sine and cosine transforms. Z-transforms-definition fting rule-problems. for Engineers by Steven C Chapra& Raymond P Canal Mathematics by Dr. B.S. Grewal, Khanna Publishers, N ng Mathematics by H. K. Das, S. Chand & company Lto ng Mathematics by E Kreyszig (John Wiley & Sons) e the students shall be able to, rms using non-linear equations and interpolation tech	10 Hours Durier sine and Fourier cosine on, standard forms, linearity le. New Delhi. d. Ram Nagar, New Delhi.
Infinite Fourier transforms a transforms, Inverse Fourier property, damping rule, shif Reference Books * 1. Numerical Methods 2. Higher Engineering N 3. Advanced Engineerin 4. Advanced Engineerin Course Outcomes ** After completion of the course 1. Solve engineering proble 2. Solve problems using nur	and inverse Fourier transforms- simple properties, Fo r sine and cosine transforms. Z-transforms-definition fting rule-problems. for Engineers by Steven C Chapra& Raymond P Cana Mathematics by Dr. B.S. Grewal, Khanna Publishers, N ng Mathematics by H. K. Das, S. Chand & company Lto ng Mathematics by E Kreyszig (John Wiley & Sons) e the students shall be able to, ms using non-linear equations and interpolation tech merical differentiation and numerical integration.	10 Hours Durier sine and Fourier cosine on, standard forms, linearity le. New Delhi. d. Ram Nagar, New Delhi.
Infinite Fourier transforms a transforms, Inverse Fourier property, damping rule, shif Reference Books * 1. Numerical Methods 2. Higher Engineering N 3. Advanced Engineerin 4. Advanced Engineerin Course Outcomes ** After completion of the course 1. Solve engineering proble 2. Solve problems using nur 3. Solve ordinary differentia	and inverse Fourier transforms- simple properties, Fo r sine and cosine transforms. Z-transforms-definition fting rule-problems. for Engineers by Steven C Chapra& Raymond P Cana Mathematics by Dr. B.S. Grewal, Khanna Publishers, N ng Mathematics by H. K. Das, S. Chand & company Lto ng Mathematics by E Kreyszig (John Wiley & Sons) e the students shall be able to, ms using non-linear equations and interpolation tech merical differentiation and numerical integration. al equations using numerical methods.	10 Hours Durier sine and Fourier cosine on, standard forms, linearity le. New Delhi. d. Ram Nagar, New Delhi.
Infinite Fourier transforms a transforms, Inverse Fourier property, damping rule, shif Reference Books * 1. Numerical Methods 2. Higher Engineering N 3. Advanced Engineerin 4. Advanced Engineerin Course Outcomes ** After completion of the course 1. Solve engineering proble 2. Solve problems using nur 3. Solve ordinary differentia 4. Solve Problems using the	and inverse Fourier transforms- simple properties, Fo r sine and cosine transforms. Z-transforms-definition fting rule-problems. for Engineers by Steven C Chapra& Raymond P Cana Mathematics by Dr. B.S. Grewal, Khanna Publishers, N ng Mathematics by H. K. Das, S. Chand & company Lto ng Mathematics by E Kreyszig (John Wiley & Sons) e the students shall be able to, ms using non-linear equations and interpolation tech merical differentiation and numerical integration. al equations using numerical methods.	10 Hours Durier sine and Fourier cosine on, standard forms, linearity le. New Delhi. d. Ram Nagar, New Delhi.

Course Outcomes (POs)									Program Specific Outcomes (PSOs)						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	3	2	-	-	-	_	-	-	-	-	-	-	-	-	-

CO5 3 2		
UBT305C	BIOCHEMISTRY	Credits: 03
L:T:P - 3:0:0	BIOCHEMISTRY	CIE Marks: 50
Total Hours/ Week: 03		SEE Marks: 50
		12 Hrs.
	UNIT-I	12 HIS.
Carbohydrate Metabolism: Glycolysis, TCA cycle, Electro Calvin Cycle, Glyoxylate cy gluconeogenesis. Disorders of carbohydrate me (Defective enzyme lead to diso Osazone formation to identify Lipid Metabolism: Biosynthesis of fatty acids. che biodegradation of fatty acid, ke	the carbohydrates. UNIT–II Desterol, phospholipids and glycolipids, Regulation setone bodies production during starving and dia	n and respiration energetics. ogenesis and regulation of lycogen storage disorder etc. 10 Hrs. on of fatty acid biosynthesis,
Disorders of lipid metabolism-		
	UNIT-III	10 Hrs.
	nucleotides - biosynthesis of UTP & CTP. Biodegra ng of Purine and Pyrimidine nucleotides by salvag n-Nyhan Syndrome and Gout. UNIT–IV	
Amino Acid Metabolism:		101113.
Biosynthesis of amino acids st Asparagine, Methionine, Lysir	arting from acetyl CoA (with reference to oxaloa le, Threonine.Biodegradation of amino acids- dea nino acid metabolism-Phenylketonuria, Albinism	amination, transamination
 Lubert Stryer (2010)., "E Voet&Voet (2004). "Bio Thomas M. Davlins (200 Mathews, Vanholde & A K. Trehan (2003). "Bioch Elliot & William H (2005). Helmreich JEM (2005). ' U. Sathyanarayana (200 Berg J.M., Stryer, Tymod 	hael Cox (2011). "Lehninger Principles of Biocher Biochemistry" - Freeman & Co., Pub. chemistry"- 3rd Edition, John Wiley, New York Pu 1). "Biochemistry with clinical correlations" Wile when (2010). "Biochemistry" -3rd Edition, Pearsc memistry" -New Age International Pub, 2nd editio). "Biochemistry & Molecular Biology" Oxford Pu (Biochemistry of cell signaling" –Oxford Pub. 7). "Biochemistry" -Books and Allied Pub. Ezko J.L (2010). "Biochemistry" Freeman & co. Delecular Biology" -Narosa Publications, 2nd Editio	ub. y-Liss; 5 edition. on Education Pub. <i>,</i> 3 rd Edition. on. b.
Course Outcomes**		

After completion of the course student will have the

- 1. Ability to understand the principles of high energy compounds & interpret the metabolic pathways in the carbohydrates and their disorders
- 2. Ability to recognize the regulation of lipid metabolism along with the in born errors.
- 3. Ability to understand the origin of atoms in purine and pyrimidine & also interpret the pathways in the nucleic acid metabolism disorders
- 4. Ability to comprehend pathways involved in amino acid metabolism and its disorders

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes	e Outcomes (POs)									Program Specific Outcomes (PSOs)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	2	-		-	-	-	-	-	1	2	2	-
CO2	2	3	3	3	-	3	-	-	-	-	-	1	2	1	1
CO3	2	2	3	3	-	3	-	-	-	-	-	3	2	2	-
CO4	2	2	2	2	-	2	-	-	-	I	-	2	2	2	-

UBT315C		Credit	s: 03
L:T:P – 2:2:0	BIOPROCESS PRINCIPLES AND CALCULATIONS	CIE Marl	ks: 50
Total Hours/Week: 04		SEE Mar	ks: 50
	UNIT-I		10 Hrs.
flow sheet and unit operation Inter-conversion of units from Composition of mixtures an	of traditional and modern applications of biotechn ns in chemical and bioprocess industries. Fundamer m one system to another (FPS, CGS, MKS, SI).Conc d solutions- Percentage by weight, mole and vo veight; ppm, pH and pK Buffer calculations. Numerica	ntal and derive ept of mole a lume; Normal	ed quantities, nd molecule,
	UNIT-II		10 Hrs.
	quation for steady and unsteady states. Materia callization, Drying, Mixing, and Evaporation Opera		cal problems
	UNIT-III		10 Hrs.
	electivity and related problems. Material balances ations involving Excess air and Air-fuel ratio. Numeric		
	UNIT-IV		10 Hrs.
estimation of heat capacity for standard heat of reaction, Sta	ation for steady state. Thermo physics and Thermo or solids, liquids, gases and their mixtures. Enthalpy, S andard heat of combustion and calorific value, Calcu piochemical reactions. Numerical problems.	Standard Heat	of formation,
1 Hougon OA Wats (201	8) Chemical Process Principles: Part I, 2nd Edn., John		
e , ,	rocess Engineering Principles, 2nd Edition, Elsevier Ir		
	ocess Calculations Stoichiometry, 2nd Edn, Nirali Pra		
· · ·	(2008) Bioprocess Engineeringbasic Concepts, 2n		e-
 Narayanan K V, Lakshi PHI India. 	mikutty B (2016) Stoichiometry and Process Calcula	ations, 2nd Edi	tion,
-	I) Basic Principles and Calculations in Chemical Engin	eering, 8th Edr	
7. Phi Learning Pvt Ltd.			۱,
			ι,
	mical Calculations 2nd Edn., John Wiley & Sons, New		
	mical Calculations 2nd Edn., John Wiley & Sons, New L993) Biochemical Engg. Fundamentals, McGraw Hill,		

- 1. Define the process operations and terms of calculations
- 2. Apply various types of unit systems and convert units from one system to another.
- 3. Develop strategy for solving problems involving gases, vapours etc.
- 4. Adopt the tools learned from the course to solve numerical problems which contain one or more unit operations.
- 5. Able to solve material balance problems involving reactions.
- 6. Develop mathematical relations for both mass and energy balances for different processes.
- * Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes	Programme Outcomes (POs)													Program Specific Outcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	2	2	1	1	-	-	-	-	-	-	-	3	-	-	
CO 2	3	2	3	2	1	-	-	-	-	-	-	-	3	-	-	
CO 3	2	3	2	2	1	-	-	-	-	-	-	-	3	-	-	
CO 4	3	2	1	1	1	-	-	-	-	-	-	-	3	-	-	
CO 5	2	3	3	1	1	-	-	-	-	-	-	-	2	-	-	
CO 6	2	2	2	2	1	-	-	-	-	-	-	-	2	-	-	

UBT312C		Credits: 03
L:T:P – 3:0:0	UNIT OPERATIONS	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

10 Hrs.

10 Hrs.

UNIT-I

UNIT-II

Introduction to Fluid Mechanics:

Units and Dimensions, Basic and Derived units, Dimensional homogeneity, Dimensionless numbers, Rayleigh method, Buckingham's pi theorem, Similitude. Fluid definition and classification (Types of fluids – Newtonian and Non Newtonian); Rheological behaviour of fluids. Fluid statics and its applications Hydrostatic equilibrium, Pressure measurement - Manometers.

Flow past Immersed Bodies:

Types of flow - laminar and Turbulent; Reynolds number; Basic equations of fluid flow - Continuity equation and Bernoulli equation; Correction for Bernoulli's equation, Pump work in Bernoulli's equation; Flow through circular and non-circular conduits – Friction factor relations for smooth and commercial pipes.

	UNIT–III	10 Hrs.
Flow measurements:		

Orifice meter, Venturimeter, Rota meter. Pumps, principle, construction numerical. Major and minor losses, Centrifugal & Reciprocating pumps, Characteristics of centrifugal pumps. Pipes, fittings and valves.

UNIT–IV	10 Hrs.
Mechanical Operations:	

Types of filtration, Filter media and filter aids, calculation of resistances and rate of filtration, filtration equipment. Settling, Free and Hindered, Stoke's law, Newton's law, Terminal settling velocity, Batch sedimentation, Agitation: Theory of mixing, Power number calculations, mixing equipment. Flow patterns in agitated tanks, mechanism of mixing, scale up of mixing systems. Size Separation: Particle shape, size, screen analysis, screening equipment. Size Reduction: Characteristics of comminute products, crushing laws and work index; Size reduction equipment.

Reference Books *

- McCabe WL, Smith JC and Harriott (2005) Unit operations of Chemical Engineering, 7th Edn., McGraw-Hill Publications, USA.
- 2. Gavhane K. A (2012) Unit Operations I & II, 22nd Edn. Nirali Prakashan, India.
- Alan S Foust, Wenzel LA, Clump CW, Maus L, and Anderson LB (2008) Principles of Unit Operations. 3rd Edn. John Wiley & Sons, USA.
- R. P. Chhabra V. Shankar (2017) Coulson and Richardson's Chemical Engineering Volume 1A: Fluid Flow: Fundamentals and Applications. 7th Edition, Elsevier, USA.
- R.P. Chhabra Basavaraj Gurappa (2019) Coulson and Richardson's Chemical Engineering Volume 2A: Particulate Systems and Particle Technology. 6th Edition, Elsevier, USA.

Course Outcomes**

After completion of the course student will be able to

- 1. Understand the basic concept of fluid mechanics and flow measurements.
- 2. Predict the dimensional analysis and solution for fluid flow problems.
- 3. Predict the pressure drop in fluid flow and flow through packed beds.
- 4. Estimate the flow rate of fluids and design the pumps for transportation of fluids.
- 5. Analyse and solve the problems on filtration and settling.
- 6. Analyse the forces involved in flow through solids and its operations
- * Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes		Programme Outcomes (POs)									Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	2	2	1	1	-	-	-	-	-	-	-	3	-	-
CO 2	3	2	3	2	1	-	-	-	-	-	-	-	3	-	-
CO 3	2	3	2	2	1	-	-	-	-	-	-	-	3	-	-
CO 4	3	2	1	1	1	-	-	-	-	-	-	-	3	-	-
CO 5	2	3	3	1	1	-	-	-	-	-	-	-	2	-	-
CO 6	2	2	2	2	1	-	-	-	-	-	-	-	2	-	-

UBT313C		Credits: 03
L:T:P – 3:0:0	MICROBIOLOGY	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50
	UNIT-I	10 Hours
development of microbiology. Microb Microscopy:	nicrobiology-Evolution of microbes. Contril bial diversity & taxonomy, Prokaryotes & Eul field microscopy, Dark-Field Microscopy,	karyotes.
Fluorescence Microscopy and Electror	n microscopy (SEM & TEM).	
	UNIT–II	10 Hrs.
growth (continuous and batch). Viru reproduction. Fastidious microorganis	ure of Bacteria, Culturing of bacteria, Types uses, fungi, algae, protozoa, actinomycete sms. Microbial toxins. iques- Aerobic and Anaerobic culture techr	es- structure and modes of
	UNIT-III	10 Hrs.
and control (Typhoid, Malaria,Polio, Sa Agricultural and Environmental Micro Microbiology of soil, Air and Ac bioremediation and biocontrol agents Industrial Microbiology: Microbial p cheese), Microbes as source of pro-	UNIT-IV obiology: quatic Microbiology, Biofertilizer, Plant c. processes using yeasts and bacteria (proc otein (SCP), gelatin agents (alginate, xar es (amylase, protease), Useful products f	12 Hrs. endophytes, Microbes in duction of alcohol, vinegar, nthin, agar agar) Microbial
Reference Books *		
 Tortora, Funke and Case, 2006, E Alcamo I 2001. "Fundamenta Prescott, Harley & Klein, 2008, 	010 "Microbiology"- 5 th Edition Tata Macgr , "Microbiology an Introduction" -8 th Edition ls of Microbiology"6th Ed, Jones & Bartlet, P "Microbiology" -7th Edition, WCB/McGraw strial Microbiology"-Agribios India.	, Pearson Education. Pub.
Course Outcomes**		
2. Ability to analyze the technique	epts of Microbiology, scope ,organization es to study microorganisms through microsc e of different microbes and interpret the te	• •

- 4. Ability to discuss the causative organisms of the disease and their effect on society
- 5. Ability to comprehend the applications in the industry and their use in society
- 6. Ability to analyse the applied techniques in the environment and create awareness to society

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pro	ograi	nme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	2	2	2	-	-	2	-	-	-	-	-	-	1	1	1	
CO2	2	2	2	-	2	3	-	-	-	-	-	-	2	1	2	
CO3	3	3	2	-	2	2	-	-	-	-	-	1	1	1	2	
CO4	3	3	3	-	2	3	-	-	-	-	-	1	2	1	3	
CO5	2	2	1	-	2	1	-	-	-	-	-	2	1	1	1	
CO6	2	2	1	-	3	1	-	-	-	-	-	2	2	1	3	

UBT317C	CYTOGENETICS AND CELL CULTURE	Credits: 03
L:T:P – 3:0:0	TECHNIQUES	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

10 Hours

10 Hrs.

12 Hrs.

UNIT-I

Cell cycle and its regulation:
Cell & cell organelles, chromosome structure and its organisation, Cell division-mitosis and meiosis & their
significance, (gametogenesis) cell cycle: check points, cell cycle and Regulation, factors regulating M phase
initiation, M phase kinase, activation and inactivation.
Introductory genetics:
Mendel's laws of inheritance, Gene interactions-complete, incomplete, supplementary, complimentary,
epistasis-inhibitory. Multiple allelism, Linkage, recombination and chromosomal mapping. Sex linked
inheritance and extra chromosomal inheritance.
UNIT–II 10 Hrs.
Plant cell culture
History and Introduction, requirements, lab organisation, media constituents, choice of media sterilization of
media, explant selection, sterilisation and preparation for inoculation, role of growth hormones in cell
culture. Cellular totipotency, cytodifferentition, organogenic differentiation, embryogenesis. Plant growth
factors and hormones - auxins, gibberlins, cytokines and others. Stoichometry of cell growth and product
formation.
Culture techniques and applications, cell and organ culture, protoplast culture, somatic hybridization,
haploid production ,micro propagation: somaclonal variation Regeneration of plantlets-shooting, rooting and
hardening, synthetic seeds.

Animal cell culture Techniques:

History and development of mammalian cell culture. Lab organization, Introduction to balanced salt solutions. Cell culture media (Natural and Artificial) - components of the medium, functions of media components. Role of antibiotics in media. Cell lines – Mechanical and enzymatic mode of desegregation, establishment of primary culture. Subculture - passage number, split ratio, seeding efficiency, criteria for subculture. Cell lines -definite and continuous cell lines. Measurement of cell number Haemocytometer and coulter counter.

UNIT-III

UNIT-IV

Cell line Characterisation and Maintenance:

Measurement of Cell viability and Cytotoxicity. Dye exclusion and inclusion tests, clonogenic assay, and MTT, PDT. Characterization, maintenance and preservation of cell lines (cryopreservation). Cell line contaminations, detection and control, cell transformation – normal v/s. Transformed cells, growth characteristics of transformed cells. In Vitro Fertilization (IVF) and Embryo Transfer Technique (ETT). Embryo splitting. Diagnosis of genetic diseases.

Reference Books *

- 1. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts and Peter Walter Molecular biology of The Cell, GS pub, 2002.
- 2. Culture of Animal cells-3rd Edition-R.Ian Freshney.Wiley Less 2010.
- 3. Rastogi S C "Cell Biology" New Age International Pub. 2005.
- 4. Powar C.B., "Cell Biology", Himalaya Pub. 2006.
- 5. Channarayappa, Cell biology, Universities Press, 2010.
- 6. Gardener, Simmons and Snustad, "Principles of Genetics" John Willey Publisher, 2003

- 7. Singh B.D, "Fundamentals of Genetics", Kalyani Pub, 2010.
- 8. Biotech Expanding Horizons-B. D. Singh, Kalyani Publishers, 2010.
- 9. Introduction to Plant biotechnology by H. S. Chawla, 2nd Edition, Oxford and IBH Publishers, 2010

Course Outcomes**

Student will be

- 1. Able to understand the chromosome structure, cell cycle regulation and Mendalian genetics.
- 2. Able to use the plant cells to produce in vitro cultures
- 3. Able to apply the tissue culture techniques in various applications
- 4. Able to acquire working knowledge of culture of animal cells in *in vitro* conditions.
- 5. Able to identify, describe and classify the contaminants of cell culture and cryopreservation techniques
- 6. Able to identify the various applications of cell culture techniques

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course				Programme Specific Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	-	-	-	3	1	-	-	-	-	-	-	1	2	-
CO 2	2	-	-	-	3	1	-	-	-	-	-	-	2	2	-
CO 3	2	-	-	-	3	1	-	-	-	-	-	-	1	2	-
CO 4	2	-	-	-	3	1	-	-	-	-	-	-	2	2	-
CO 5	2	-	-	-	3	1	-	-	-	-	-	-	1	2	-
CO 6	2	-	-	-	3	1	-	-	-	-	-	-	2	2	-

UBT307L

LIST OF EXPERIMENTS IN BIOCHEMISTRY LABORATORY

Credits: 1.5

CIE Marks: 50 SEE Marks: 50

L:T:P – 0:0:3 Total <u>Hours/Week: 03</u>

	1.	pH measurements, volume / weight measurements, concentration units, Specificity, precision,
		Accuracy.
	2.	Classes of carbohydrates, lipids and proteins.
	3.	Reagent preparation and preparation of buffers of constant strength.
	4.	Qualitative tests for carbohydrate and lipids.
	5.	Qualitative tests for amino acids and proteins.
	6.	Estimation of sugar by Folin and O-toluene method.
	7.	Estimation of amino acid and protein by ninhydrin method
	8.	Determination of Saponification value of lipids.
	9.	Determination of lodine value of lipid.
	10	. Determination of acetyl value of a lipid.
	11.	. Estimation of urea by diacetyl monooxime method.
I	Refere	nce Books *
	1.	Laboratory manual of Biochemistry by Pattabiraman , 4 th Edition, International book publishers India, 2017.
	2.	Sadasivam and Manickam, "Biochemical Methods", 2 nd Edition, New age international Publishers, 2017.
(Course	e Outcomes**
ľ	1.	Ability to understand the basic aspects of standard reagent & buffer preparations.
	2.	Ability to identify various biomolecules qualitatively.
	3.	Ability to estimate the concentration of carbohydrates in a given sample
	4.	Ability to evaluate the concentration of amino acid quantitatively.
	5.	Ability to analyze the types of lipids.
	6.	Ability to apply knowledge of acid & iodine value to determine the quality of lipids.
1		

Course Outcomes				Pro	Program Specific Outcomes (PSOs)										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	2	-	-	3	3	-	-	-	3	2	3	1
CO2	2	3	3	2	-	-	2	3	-	-	-	3	2	3	1
CO3	2	3	3	3	-	3	2	2	-	-	-	2	2	1	2
CO4	3	3	3	2	-	2	2	2	-	-	-	2	3	1	1
CO5	2	2	2	2	-	1	2	2	-	-	-	3	3	2	1
CO6	2	2	3	3	-	3		3	-	-	-	2	3	2	1

UBT308L		Credits: 1.5
L:T:P – 0:0:3	MICROBIOLOGY LABORATORY	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

LIST OF EXPERIMENTS IN MICROBIOLOGY LABORATORY

- 1. Study of microscopes: Types, working principle, parts of the microscope, handling (operating) & caring.
- 2. Media preparation: NA, Peptone broth, PDA, Macconkeys agar.
- 3. Isolation of bacteria by serial dilution, pour plate ,spread plate and streak plate techniques
- 4. Isolation and identification of bacteria and fungi from different sources.
- 5. Study of colony characteristics and Morphology of bacteria, yeasts and fungi.
- 6. Study of different staining techniques. (Simple staining differential staining)
- 7. Fermentation of Carbohydrates (gas production)
- 8. Growth curve of bacteria and yeast.
- 9. Antibiotic susceptibility testing of bacteria
- 10. Observation of motility by hanging drop technique.

Reference Books *

- 1. Pelczar, Chan and Noel Kreig, 2010, "Microbiology"- 5th Edition Tata Macgraw Hill,.
- 2. Tortora, Funke and Case, 2006. "Microbiology an Introduction" -8th Edition, Pearson Education,
- 3. K. R. Aneja, 2004. "Experiments in Microbiology, Plant Pathology and Biotechnology", 4th Edition, New age International Pub.

Course Outcomes**

After completion of the course student will be able to

- 1. Analyze the principle and procedures of different experiments
- 2. Perform simple and differential staining techniques
- 3. Prepare the media for culturing microbes
- 4. Observe the motility of organisms
- 5. Interpret the instruments and different components used in lab interpret the subject orally.

Course Outcomes				Pro	Program Specific Outcomes (PSOs)										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	-	-	2	1	-	-	-	-	-	3	1	1	1
CO2	2	2	-	-	2	3	-	-	-	-	-	2	2	1	2
CO3	3	3	-	-	3	2	-	-	-	-	-	2	1	1	2
CO4	3	3	-	-	2	3	-	-	-	-	I	3	2	1	3
CO5	1	3	-	-	3	1	-	-	-	-	I	3	1	2	1
CO6	2	1	-	-	3	1	-	-	-	-	-	3	1	2	1

UBT311L		Credits: 01
L:T:P -0:0:2	UNIT OPERATIONS LABORATORY	CIE Marks: 50
Total Hours/Week: 02		SEE Marks: 50

	LIST OF EXPERIMENTS IN UNIT OPERATIONS LABORATORY
1.	Friction in circular and non-circular pipes
2.	Flow rate measurement using Orifice meter
3.	Flow rate measurement using Venture meter
4.	Batch sedimentation test
5.	Constant pressure /constant filtration using leaf filter
6.	Verification of Stoke's law in Free / Hindered settling
7.	Determination of screen effectiveness and sieve analysis
8.	Verification of Bernoulli's theorem
9.	Unsteady state flow
10	. Study of pump characteristics
11	. Study of packed bed characteristics
12	. Distillation
efer	ence Books *
. N	Iccabe W.L. And Smith J.C, "Unit Operations In Chemical Engineering" -7 th Edition, Mcgraw-Hill, 2017.
. G	oenkloplis, "Principles of Unit Operations" -P H I Publication, 1993.
. Ba	adger, Banchero and Walter (1955). Introduction to Chemical Engineering, 3rd Edn, Mcgraw- Hill
	ublications, USA.
	an S Foust, Wenzel LA, Clump CW, Maus L, and Anderson LB (2008). Principles of Unit Operations. 2nd
Ec	dn., John Wiley & Sons, USA.

5. Coulson And Richardson's (2011); Chemical Engineering, Vols I & II., 6 Th Edn., Reed Educational And Professional Publishing Ltd., USA.

Course Outcomes**

Re

1. 2. 3.

4.

On successful completion of this course students will be able to

- 1. Determine energy loss due to friction in flow systems
- 2. Measure flow rate of incompressible fluids
- 3. Perform particle size analysis
- 4. Evaluate performance of size reduction and filtration equipments
- 5. Understand the working principles of mass transfer equipments
- 6. Evaluate the performance of mass transfer equipments

Course Outcomes				Pro	Program Specific Outcomes (PSOs)										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	-	-	2	1	-	-	-	-	-	3	1	1	1
CO2	2	2	-	-	2	3	-	-	-	-	-	2	2	1	2
CO3	3	3	-	-	3	2	-	-	-	-	-	2	1	1	2
CO4	3	3	-	-	2	3	-	-	-	-	-	3	2	1	3

CO5	1	3	-	-	3	1	-	-	-	-	-	3	1	2	1
CO6	2	1	-	-	3	1	-	-	-	-	-	3	1	2	1

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE DEPARTMENT OF BIOTECHNOLOGY SCHEME OF TEACHING AND EXAMINATION

2021-2022

V SEMESTER

SI.	Subject	Subject Title		H	ours/Week		Examination Marks			
No.	Code		Credits	Lecture	Tutorial	Practical	CIE	SEE	Total	
		Bioprocess &								
1	UBT516C	Reaction	3	3	0	0	50	50	100	
		Engineering								
		Genetic								
2	UBT519C	Engineering &	3	3	0	0	50	50	100	
		Applications								
3	UBT520C	Fundamentals of	3	2	2	0	50	50	100	
3	OBIJZUC	Bioinformatics	3	2	2	0	50	50	100	
4	UBT52XE	Elective-1	3	3	0	0	50	50	100	
5	UBT506H	Industrial Safety	3	3	0	0	50	50	100	
	00150011	and Bioethics	5	5	0	Ŭ	50	50	100	
6	UBT514L	Bioinformatics Lab	1	0	0	2	50	50	100	
7	UBT515L	Genetic	1	0	0	2	50	50	100	
/	OBIJIJE	Engineering Lab		0	0	2	50	50	100	
8	UCS559L	Advanced C	2	0	0	4	50	50	100	
0	0033335	Programming Lab	2	0	0	4	50	50	100	
		Advanced								
9	UHS002N	Quantitative	1.0	1	0	0	50	50	100	
5	011300210	Aptitude and Soft	1.0		U	0	50	50	100	
		Skills								
	Т	otal	20	15	02	8	450	450	900	

Elective-1

UBT521E: Environmental BT UBT522E: Biomedical Instrumentation UBT525E: Stem cell technology **UBT527E: Nutraceuticals**

L:T:P - 3:0:0	BIOPROCESS & REACTION ENGINEERING	CIE Ma	
Total Hours/Week: 03		SEE Ma	rks: 50
			10.11.1
-	UNIT-I		10 Hrs.
Kinetics of Homogeneous rea		_	
-	and bioprocess engineering, Concentration depende		
_	n of elementary reaction and Non elementary react		
-	ing Kinetic Models. Temperature-dependent te		
	om Arrhenius law, Collision theory, Transition sta	te theory, The	ermodynamic
approach, Activation Energy.			
	UNIT–II		10 Hrs.
Interpretation of Batch Biore			
	tor, Integral method of analysis of data -first order	•	
	pmogenous catalyzed reactions, irreversible reactions		
•	ns of shifting order, autocatalytic reactions, rever	sible reactions	, differential
method of analysis of data an			
	UNIT-III		10 Hrs.
Introduction to Reaction Des			
	nsider for designing a reactor, Types of reactors, Bas		
	conversion, Performance equation for ideal batch re		STR and PFR,
space time and space velocity	for flow reactors, design of flow reactors and numer	rical.	
	UNIT-IV		10 Hrs.
Design for single reactions			
	n of single reactors, multiple reactors CSTR in seri		ries, CSTR in
parallel .PFR in series, in paral	llel, Reactors of different types in series, and numerio	cal.	
	Reference Books *		
1. Scott Fogler, H (2016) Eler	nents of Chemical Reaction Engineering, 6 th edn., Pr	entice Hall Ind	ia Pvt. Ltd.
	ical Reaction Engineering, Wiley Eastern, 3rd edn, Ne		
, , ,	oprocess Engineering. 3nd edn., Prentice Hall PTR.		
	0) Biochemical Engineering Fundamentals, 2nd edn.	Mc Graw- Hill.	
	Fundamentals of Chemical Reaction Engineering, Joh		ons.
	cess Engineering Principles, 2nd Edition, Academic Pro		
7. Tapobrata Panda., Bioread	ctors: Analysis and Design, 1st Edition, Tata McGraw	Hill Education F	Private
Limited, New Delhi, 2011.			
	Course Outcomes**		
After completion of the cours	se student will be able to		
-	ncept of reaction engineering.		

Credits: 03

- 2. Predict the order and rate of the different reactions.
- 3. Analyse the batch bioreactor data for different reactions.
- 4. Design the suitable bioreactor for different biochemical reactions.
- 5. Predict the residence time distribution to determine the conversion in non ideal flow reactors
- 6. Analyse bioreactors for various cell cultures.

UBT516C

Course Outcomes				Pro	ograi	nme	Out	com	es (P	Os)				Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	1	-	1	2	3	1	-	-	-	-	-	1	1	2	3		
CO2	1	-	2	2	3	1	-	-	-	-	-	1	1	2	3		
CO3	1	-	3	2	3	1	-	-	-	-	-	1	1	2	1		
CO4	1	-	3	2	3	1	-	-	-	-	-	1	1	2	1		
CO5	1	-	3	2	3	3	-	-	-	-	-	1	1	2	1		
CO6	1	-	1	2	3	3	-	-	-	-	-	1	1	2	1		

L:T:P - 3:0:0	GENETIC ENGINEERING & APPLICATIONS	CIE Mark	s: 50
Total Hours/Week: 03		SEE Mark	ks: 50
	UNIT-I		10 Hrs.
Types of vectors - plasmids, co Enzymes in genetic engineeri Introduction- Restriction Endo	vectors in recombinant DNA technology, biology and osmids, bacteriophage lambda vectors. ng: onucleases-classification, mode of action, application phosphatase, polynucleotide Kinase, Ligases, and	ns. Enzymes us	ed in nucleic
	UNIT–II		10 Hrs.
chain reaction (PCR), its types Northern hybridization techni Construction of cDNA librarie	ction, Fluorescent In situ hybridization (FISH), colony and applications, methods of nucleic acid hybridizat ques.	ion, Southern,	
	UNIT–III		12 Hrs.
microprojectile system, and mediated gene transfer in pla and Cointegrate vectors. Transgenic science and genet Transgenic science in plant in plant transformation for prod	plants, animals and microbes –Transformation, micr liposome mediated transfer, embryonic stem cel ants – Ti & Ri Plasmid: structure and functions, Ti ba ic improvement: mprovement, Antisense RNA technology (Flavr save uctivity and performance – Herbicide resistance - gly is and its mode of action), Cry proteins – mechanism	II method. Agi ased vectors- B r tomatoes). A yphosate. insec	robacterium- inary vectors pplication of
	UNIT–IV		10 Hrs.
and gene silencing. Gene ther agents in blood clotting. Chall Applications:	e therapy-gene targeting, gene augmentation, assist apy in the treatment of cancer, SCID, muscular dystr enges in gene therapy. production of Insulin, growth hormones, monoclona	ophy. Use of th	• • •
	Reference Books *		
recombinant DNA, 2 nd 2. Watson (2010), Recom	Pasternak (2017). Molecular Biotechnology – Pri		

Credits: 03

4. NPTEL Course material.

UBT519C

Course Outcomes**

After completion of the course student will be able to

- 1. Emphasize on the basic aspects of genetic engineering; the key areas and apply the knowledge in vectors used in genetic engineering experiments.
- 2. Apply the properties of various enzymes and vectors in gene and genome manipulation.
- 3. Acquire working knowledge on the mechanism of methods of nucleic acid detection, hybridization and amplification and their applications in the research.
- 4. Acquire working knowledge on the construction of genomic and cDNA libraries, their applications in the research and biology of Bacillus thuringiensis.
- 5. Identify the various gene transfer techniques in plants, animals and microbes that are essential for controlled protein production in the industry and acquire knowledge on various strategies of Gene therapy and its application in therapeutics.
- 6. Identify and apply the current applications and advances of biotechnology and describe the steps involved in the production of biopharmaceuticals in microbial systems and industrial utilization.

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)				Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	1	-	1	2	3	1	-	-	-	-	-	1	1	2	3		
CO2	1	-	2	2	3	1	-	-	-	-	-	1	1	2	3		
CO3	1	-	3	2	3	1	-	-	-	-	-	1	1	2	1		
CO4	1	-	3	2	3	1	-	-	-	-	-	1	1	2	1		
CO5	1	-	3	2	3	3	-	-	-	-	-	1	1	2	1		
CO6	1	-	1	2	3	3	-	-	-	-	-	1	1	2	1		

UBT520C

L:T:P – 2:2:0

Total Hours/Week: 04

FUNDAMENTALS OF BIOINFORMATICS

Credits: 03 CIE Marks: 50

SEE Marks: 50

12 Hrs.

10 Hrs.

10 Hrs.

Introduction to Bioinformatics and Biological Database

Introduction to bioinformatics, Components of bioinformatics and interdisciplinary nature of bioinformatics, Classification of biological databases; Primary database: NCBI, GenBank, DDBJ and EMBL, PIR, Uniprot; Secondary databases: PROSITE, PRINTS, BLOCKS and Pfam; Structure databases: Protein Data Bank (PDB), MMDB, CATH, SCOP; Specialized databases: PubMed, OMIM, Metabolic Pathway-KEGG;ExPasy and PubChem databases, File format: GenBank flat file, PDB flat file. Tutorials: Practices on other primary and secondary databases

UNIT–II

UNIT-I

Sequence alignment and database searches:

Introduction, Types of sequence alignment, Comparison between global and local alignment, Pairwise sequence alignment: Dot matrix analysis, Dynamic programming, Global alignment-Needleman-Wunch algorithm, Local Alignment-Smith & Waterman algorithm, Substitution matrix- BLOSUM and PAM; GAP Penalty; Low complexity regions; Word/k-tuple method- BLAST, FASTA.

Multiple Sequence Alignment:Introduction, applications of MSA; Types of MSA: Progressive method of MSA-Clustal W; Iterative method of MSA; Motifs and Patterns; Statistical models of MSA-Position Specific Scoring Matrix (PSSM) and Profiles.

Tutorials: Solving problems on pairwise sequence alignment

UNIT–III

UNIT-IV

Phylogenetic analysis and predictive methods using sequences

Introduction, concepts of trees, types of evolutionary trees, Rooted and unrooted trees, Steps in constructing phylogenetic trees, Tree building methods - Distance based methods: Neighbor Joining (NJ) method, Fitch-Margoliash (FM) method; Character based method: Maximum parsimony; Tree Evaluation methods, Phylogenetic Softwares.

Predictive Methods using sequences: Structure of Prokaryote and Eukaryote genes; Algorithms for Prokaryotic and Eukaryotic gene prediction, Web based tools for gene prediction (ORF finder, GenScan).Protein Secondary Structure Prediction, Tertiary Structure Predictions: Homology modelling.

Tutorials: Practices on prediction of phylogenetic trees

	10 Hrs.
_	

Plasmid mapping and primer designing &molecular modelling techniques

Restriction mapping, Web based tools: Restriction Mapper and REBASE. Utilities of Mac Vector and Vector NTI; Basics of Primer designing, Primer design softwares (PRIME3). Rational Approaches in Drug Design, molecular docking, deriving the Pharmacophoric Pattern, quantitative structure-activity relationship (QSAR), deriving bioactive conformations, Calculation of Molecular Properties, Dockingsoftwares (AUTODOCK, HEX) Tutorials: Solving problems related to Restriction mapping and Primer designing

Reference Books *

1. Introduction to Bioinformatics – Arthur Lesk, Oxford, 2nd Edition, 2006.

- 2. Bioinformatics Stuart M Brown, NYU Medical Center, NY USA. 2000.
- 3. Fundamental Concepts of Bioinformatics D E Krane & M L Raymer, Pearson, 2006.
- 4. Computational methods for macromolecular sequence analysis R F Doolittle. Academic Press, 1996.

Course Outcomes**

After completion of the course student will be able to

- 1. Importance of databases involved in bioinformatics along with their file formats
- 2. Will have idea on searching similar sequences in databases and find similarity between given set of sequences
- 3. Derive evolutionary relationship between genes and proteins by phylo-genetic analysis
- 4. Explain various statistical tools involved in predicting the structure of genes and proteins
- 5. The principle behind restriction mapping and primer designing
- 6. Different approaches involved in silico drug design

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course	Course Programme Outcomes														Programme Specific Outcomes					
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3					
CO 1	3	2	-	-	2	1	2	2	-	-	-	3	2	2	3					
CO 2	3	2	2	2	2	1	2	-	-	-	-	3	2	2	3					
CO 3	3	2	-	1	-	-	2	-	-	-	-	3	2	2	3					
CO 4	2	2	-	1	-	2	-	-	-	-	-	3	1	-	2					
CO 5	2	2	2	1	-	2	-	2	-	-	-	1	2	-	2					
CO 6	2	1	2	2	2	2	1	1	-	-	-	1	1	1	1					

UBT521E L:T:P - 3:0:0 Total Hours/Week: 03	L:T:P - 3:0:0 ENVIRONMENTAL BT CIE											
	UNIT-I		10 Hrs.									
microorganisms, biogeochemica Bioaccumulation of toxicants Characteristics of Xenobiotics,	Relationship of Bioaccumulation with Chemical S		hysiology of									
	UNIT–II		12 Hrs.									
Wastewater treatment of food processing industries, dairy indu Solid waste management Basic aspects, general composit	val of phosphorous and Nitrogen, Nutrient removed processing industries like sugar factories, veget istries, beverages industries, and distilleries. tion of urban solid wastes, aerobic treatment, and gement through Biotechnological processes involutions.	able oil indust	tries, potato nent, biogas									
Bioineulcai wastes, Moer fules.	UNIT-III		10 Hrs.									
Bioremediation Major contaminants of air, wate	methods of bioleaching, Microbial recovery of met er and soil, Biomonitors of environment (Bioindica Biofilms its applications. Bio-stimulation of Nat	tors), Bioremed	diation using									
	UNIT-IV		10 Hrs.									
Bioresource conservation progr	biodiversity, Biosphere reserves and Ecosystem Co amme, Biotechnological processes for bioresource 3T and its role in utilization of Biodiversity, In	e assessment,	BT in ex situ									
	Reference Books *											
Ltd. 2. Dubey R C and Maheshwari I	Dook of Environmental Biotechnology, I K Internat D K (2022), Text book of microbiology (5 th edition), 5 7), Environmental Biotechnology, United Kingdom:	S Chand and Co										
	Course Outcomes**											
 Develop different treatment Develop different treatment 	student will be able to cope of Environmental BT and concepts of Bioaccun ent methods for waste water by using BT approach. ent methods for solid waste by using BT approach. pioleaching for metal recovery and bioremediation											

4. Apply the knowledge of bioleaching for metal recovery and bioremediation processes to remove

environmental contaminants.

- 5. Understand the Value of biodiversity and threats to biodiversity.
- 6. Apply the knowledge of BT in biodiversity conservation.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pr	ogra	mme	e Out	com	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	3	2	2	-	-	-	2	-	3	-	1	2	3	1	
CO2	2	3	2	1	-	-	-	1	2	-	-	-	3	3	1	
CO3	2	3	2	1	-	-	-	1	2	-	-	-	3	3	1	
CO4	1	3	2	3	-	-	-	2	2	3	-	-	2	3	-	
CO5	-	-	-	-	-	-	-	2	-	3	-	3	-	-	-	
CO6	1	3	2	2	-	-	-	-	2	2	-	-	1	3	-	

UBT527E		Credits: 03
L:T:P – 3:0:0	NUTRACEUTICALS	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50
	UNIT-I	10 Hrs.
foods and phytonutraceutical Recommended dietary intake protein utilisation. Basics of	ssification of nutraceuticals, dietary supplements, s. Scope and opportunities involved in the industry, (RDA), acceptable dietary intake, nitrogen balance, energy balance - Basal Metabolic Rate (BMR), Be A) with special reference to nutraceutical industry.	, Indian and global scenario. protein efficiency ratio, net
	UNIT-II	10 Hrs.
prevention and manageme hypertension, hypercholeste antioxidants - use of antioxida	d disorders: ino acids, Fat, vitamins and minerals - Excess a nt. Role of nutraceuticals with special referer prolemia, cancer, glands in the prevention and ants as dietary supplements in prevention and treat and functional foods in pediatrics, geriatrics, sports,	nce to diabetes mellitus, d treatment. Concept of ment of cancer, obesity and
	UNIT-III	10 Hrs.
Nutraceuticals of microbial, p		10 113.
	s, phenols, Terpenoids. Animal metabolites - S gin. Examples: chitin, chitosan, glucosamine, chon	
	UNIT–IV	10 Hrs.
culture, cultivation, post har yielding lines and yield enha	ceuticals atic plants in nutraceutical industry – propagation vest technology and strategies for crop improven ancement, plant genomics and metabolomics. Biof enhanced nutraceutical properties. Golden rice, GM Reference Books *	nent, development of high fortification and nutritional
 Shahidi and Weerasingh Chemical Society,1 st Edi Richard Neeser& J. Brue Nutraceuticals, Jean, Ma 	ce German (2004) Bioprocesses and Biotechnology	nd health Effects, American
	Course Outcomes**	
 To have a general idea o To have brief idea about 	ncepts of nutraceuticals and nutrition. f scope of nutraceuticals and functional foods. nutrition related health disorders and the role of Nu s and the role of nutraceuticals among different age s	

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course	Outcomes													ramme Spe Outcomes	
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3	2	-	-	2	1	2	2				3	2	2	3
CO 2	3	2	2	2	2	1	2	-				3	2	2	3
CO 3	3	2	-	1	-	-	2	-				3	2	2	3
CO 4	2	2	-	1	-	2	-	-				3	1	-	2
CO 5	2	2	2	1	-	2	-	2				1	2	-	2
CO 6	2	1	2	2	2	2	1	1				1	1	1	1

L:T:P - 3:0:0

Total Hours/Week: 03

UNIT-I

UNIT-II

UNIT-III

UNIT-IV

10 Hrs.

Introduction

Sources of Biomedical signals, Basic medical instrumentation system, Performance requirements of medical instrumentation systems, PC based medical instruments, General constraints in design of medical instrumentation systems.

Bioelectric Signals and Electrode

Origin of bioelectric signals, Recording electrodes, - Electrode-tissue interface, metal electrolyte interface, electrolyte -skin interface, Polarization, Skin contact impedance, Silver – silver chloride electrodes, Electrodes for ECG, EEG, EMG, Electrical conductivity of electrode jellies and creams, Microelectrode. Patient Safety: Electrode shock hazards, Leakage currents.

ECG & EEG

Electrical activity of heart, Genesis & characteristics of Electrocardiogram (ECG), Block diagram description of an Electrocardiograph, ECG Lead Systems, and Multichannel ECG machine Genesis of Electroencephalogram (EEG), Block diagram description of an Electroencephalograph, 10-20 Electrode system, Computerized analysis of EEG.

Cardiac pacemakers and defibrillators

Need for Cardiac pacemaker, External pacemaker, Implantable pacemaker, Programmable pacemakers, DC defibrillator, AC defibrillator and Implantable Defibrillator.

Patient monitoring system

Bedside monitors, Central Monitoring System, Measurement of Heart rate -Average heart rate meter, Instantaneous heart rate meter, (Cardio tachometer), Measurement of Pulse Rate, Blood pressure measurement -direct and indirect method, Rheographic method, Oscillometric method, Ultrasonic Doppler shift method, Measurements of Respiration rate -Thermistor method, impedance puenmography, CO2 method, and Apnea detector. Blood flow meters: Electromagnetic and its types, Ultrasonic, NMR, Laser Doppler. Blood gas analyzers: Blood pH measurement, Measurement of Blood pCO2, pO2.

Physiological transducers

Introduction, classification, performance characteristics of transducers-static and dynamic transducers, Displacement, position and motion transducers, Pressure transducer, Transducers for body temperature measurement, Optical Fiber sensor and Biosensor

Recording systems

Basic recoding system, general considerations for signal conditioners, preamplifiers-instrumentation amplifier, and ink jet recorder, potentiometric recorder, thermal array recorder and electrostatic recorder.

Analysis of Cardiac output measurement: Indicator dilution method, Dye dilution method, Thermal dilution techniques, Measurement of Continuous cardiac output derived from the aortic pressure waveform, Impedance technique. Pulmonary function analysis: Pulmonary function measurement, Spirometry, Puemotachometer, Measurement of Volume, Nitrogen washout technique.

Reference Books *

1. Khandpur R S (2003), Hand book of Biomedical Instrumentation (2nd Edition), Tata McGraw-Hill Publishing Company Limited.

10 Hrs.

12 Hrs.

10 Hrs.

- 2. Enderle J, Blanchard S & Bronzino J (2005), Introduction to Biomedical Engineering, Elsevier.
- 3. Carr J J, Brown J M (2005), Introduction to Biomedical equipment technology(4th Edition), Prentice hall.

Course Outcomes**

After completion of the course student will be able to

- 1. Able to understand basic concepts of biomedical signals.
- 2. Able to know ECG and EEG.
- 3. Able to understand the patient monitoring system and recording systems
- 4. Able to know characteristics of transducers
- 5. Able to understand various analysis techniques
- 6. Able to understand the recording systems.

*Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pr	ogra	mme	e Out	com	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	-	-	-	2	-	-	-	-	-	-	-	1	-	2	-	
CO2	2	3	2	-	-	-	-	-	-	-	-	-	2	3	1	
CO3	2	3	2	1	-	-	-	-	-	-	-	-	3	3	1	
CO4	1	2	2	3	-	-	-	-	-	-	-	-	1	3	-	
CO5	1	3	2	2	-	-	-	-	-	-	-	-	2	3	1	
CO6	-	-	-	-	-	-	-	-	-	-	-	3	-	-	-	

Lit: P - 3:0:0 STEM CELL TECHNOLOGY CIEMarks:50 Total Hours/Week: 40 SEEMarks:50 Secore of stem cells - definition of stem cells - concepts of stem cells - differentiation , maturation , proliferation , pluripolericy, self - maintainance and self - renewal - problems in measuring stem cells - preservation protocols. UNIT-II 12 Hrs. Stem cell concept in plants Stem cell concept in plants - particularly their roots - stem cells of shot meristers of higher plants. Stem cell concept in plants Stem cell concept in maimals Stem cell concept in animals Stem cell conceet in animals	UDIJZJE											
UNIT-I 10 Hrs. Stem cells and cellular pedigrees Scope of stem cells – definition of stem cells – concepts of stem cells – differentiation , maturation , proliferation , pluripolericy, self – maintainance and self – renewal –problems in measuring stem cells – preservation protocols. UNIT-II 12 Hrs. Stem cell concept in plants Stem cell concept in plants – particularly their roots – stem cells of shoot meristems of higher plants. Stem cell concept in animals UNIT-II 10 Hrs. Stem cell concept in animals Skeletal muscle stem cell – Mammary stem cells – intestinal stem cells – keratinocyte stem cells of cornea – skin and hair follicles – hormone role in differentiation. 10 Hrs. Merencein concept in animals Skeletal muscle stem cell – Mammary stem cells, Embryonic stem cell biology - factors influencing proliferation and differentiation of stem cells – hormone role in differentiation. 10 Hrs. Haemopoietic stem cell NUTI-IV 10 Hrs. Haemopoietic stem cell Reference Books * 10 Hrs. Cellular therapies – vaccines – gene therapy – immunotherapy – tissue engineering –blood and bone marrow – Fc cells. Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regenerative Medicine, Artech House, INC Publications. 2. Lanza R et al.(2007), Principles of Tissue Engineering (3rd Edition), Academic Press. <td< th=""><th>L:T:P - 3:0:0</th><th>STEM CELL TECHNOLOGY</th><th>CIEMarks:50</th></td<>	L:T:P - 3:0:0	STEM CELL TECHNOLOGY	CIEMarks:50									
Stem cells and cellular pedigrees Scope of stem cells – definition of stem cells – concepts of stem cells – differentiation , maturation , proliferation , pluripolericy, self – maintainance and self – renewal –problems in measuring stem cells – preservation protocols. UNIT–II 12 Hrs. Stem cell concept in plants Stem cell concept in plants – particularly their roots – stem cells of shoot meristems of higher plants. UNIT–II 10 Hrs. Stem cell concept in animals Skeletal muscle stem cell – Mammary stem cells – intestinal stem cells – keratinocyte stem cells of cornea – skin and hair follicles –Tumour stem cells, Embryonic stem cell biology - factors influencing proliferation and differentiation of stem cells – hormone role in differentiation. 10 Hrs. Haemopoietic stem cell Biology – growth factors and the regulation of haemopoietic stem cells. Potential uses of stem cells Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regererative Medicine, Artech House, INC Publications. 2. Lanza R et al.(2007), Principles of Tissue Engineering(3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to 1. Isolate a	Total Hours/Week: 40		SEEMarks:50									
Stem cells and cellular pedigrees Scope of stem cells – definition of stem cells – concepts of stem cells – differentiation , maturation , proliferation , pluripolericy, self – maintainance and self – renewal –problems in measuring stem cells – preservation protocols. UNIT–II 12 Hrs. Stem cell concept in plants Stem cell concept in plants – particularly their roots – stem cells of shoot meristems of higher plants. UNIT–II 10 Hrs. Stem cell concept in animals Skeletal muscle stem cell – Mammary stem cells – intestinal stem cells – keratinocyte stem cells of cornea – skin and hair follicles –Tumour stem cells, Embryonic stem cell biology - factors influencing proliferation and differentiation of stem cells – hormone role in differentiation. 10 Hrs. Haemopoietic stem cell Biology – growth factors and the regulation of haemopoietic stem cells. Potential uses of stem cells Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regererative Medicine, Artech House, INC Publications. 2. Lanza R et al.(2007), Principles of Tissue Engineering(3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to 1. Isolate a												
Scope of stem cells – definition of stem cells – concepts of stem cells – differentiation , maturation , proliferation , pluripolericy, self – maintainance and self – renewal –problems in measuring stem cells – preservation protocols. UNIT–II 12 Hrs. Stem cell concept in plants Stem cell and founder zones in plants – particularly their roots – stem cells of shoot meristems of higher plants. UNIT–III 10 Hrs. Stem cell concept in animals Skeletal muscle stem cell – Mammary stem cells – intestinal stem cells – keratinocyte stem cells of cornea – skin and hair follicles –Tumour stem cells, Embryonic stem cell biology - factors influencing proliferation and differentiation of stem cells – hormone role in differentiation. UNIT–IV 10 Hrs. Haemopoietic stem cell Selolagy – growth factors and the regulation of haemopoietic stem cells. Potential uses of stem cells Cellular therapies – vaccines – gene therapy – immunotherapy – tissue engineering –blood and bone marrow – Fc cells. Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regerentive Medicine, Artech House, INC Publications. 2. Lanza R et al.(2007), Principles of Tissue Engineering (3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to 1. Isolate and Culture of Hematopoietic Stem cells 3. Analyse Differentiation of Puripotent stem cells 4. Interpret Cell culture in Scaffolds 5. Analyse growth of haemopoietic stem cells		UNIT-I	10 Hrs.									
proliferation , pluripolericy, self – maintainance and self – renewal – problems in measuring stem cells – preservation protocols. IUNIT–II III I Hrs. Stem cell and founder zones in plants – particularly their roots – stem cells of shoot meristers of higher plants. IUNIT–III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Stem cells and cellular pedig	rees										
proliferation , pluripolericy, self – maintainance and self – renewal – problems in measuring stem cells – preservation protocols. IUNIT–II III I Hrs. Stem cell and founder zones in plants – particularly their roots – stem cells of shoot meristers of higher plants. IUNIT–III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Scope of stem cells – defin	ition of stem cells – concepts of stem cells – diff	erentiation , maturation ,									
UNIT-II 12 Hrs. Stem cell concept in plants Stem cell and founder zones in plants – particularly their roots – stem cells of shoot meristems of higher plants. UNIT-III 10 Hrs. Stem cell and founder zones in plants – particularly their roots – stem cells of shoot meristems of higher plants. UNIT-III Stem cell concept in animals Skeletal muscle stem cell – Mammary stem cells – intestinal stem cells – keratinocyte stem cells of cornea – skin and hair follicles –Tumour stem cells, Embryonic stem cell biology - factors influencing proliferation and differentiation of stem cells – hormone role in differentiation. 10 Hrs. WIT-IV 10 Hrs. Haemopoietic stem cell Biology - growth factors and the regulation of haemopoietic stem cells. Potential uses of stem cells Cellular therapies – vaccines – gene therapy – immunotherapy – tissue engineering –blood and bone marrow – Fc cells. Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regenerative Medicine, Artech House, INC Publications. 2. Lanza R et al. (2007), Principles of Tissue Engineering (3rd Edition), Academic Press. Course Outcomes** After completion of the course	-	-										
Stem cell concept in plants Stem cell and founder zones in plants – particularly their roots – stem cells of shoot meristems of higher plants. UNIT–III 10 Hrs. Stem cell concept in animals Skeletal muscle stem cell – Mammary stem cells – intestinal stem cells – keratinocyte stem cells of cornea – skin and hair follicles –Tumour stem cells, Embryonic stem cell biology - factors influencing proliferation and differentiation of stem cells – hormone role in differentiation. 10 Hrs. MIT–IV 10 Hrs. Haemopoietic stem cell Biology – growth factors and the regulation of haemopoietic stem cells. 10 Hrs. Potential uses of stem cells Cellular therapies – vaccines – gene therapy – immunotherapy – tissue engineering –blood and bone marrow – Fc cells. Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regenerative Medicine, Artech House, INC Publications. 2. Lanza R et al.(2007), Principles of Tissue Engineering(3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to 1 Isolate and Culture of Hematopoietic Stem cells Isolate and Culture of Hematopoietic Stem cells Isolate and Culture of Mesenchymal Stem cells Isolate and Culture of Mese	- preservation protocols.		-									
Stem cell and founder zones in plants – particularly their roots – stem cells of shoot meristems of higher plants. UNIT–III Stem cell concept in animals Skem cell – Mammary stem cells – intestinal stem cells – keratinocyte stem cells of cornea – skin and hair follicles –Tumour stem cells, Embryonic stem cell biology - factors influencing proliferation and differentiation of stem cells – hormone role in differentiation. UNIT–IV 10 Hrs. Haemopoietic stem cell Biology – growth factors and the regulation of haemopoietic stem cells. Potential uses of stem cells Cellular therapies – vaccines – gene therapy – immunotherapy – tissue engineering –blood and bore marrow – Fc cells. Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regenerative Medicine, Artech House, INC Publications. 2. Lanza R et al.(2007), Principles of Tissue Engineering(3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to 1. Isolate and Culture of Hematopoietic Stem cells 2. Isolate and Culture of Mesenchymal Stem cells 3. Analyse Differentiation of Pluripotent stem cells 4. Int		UNIT–II	12 Hrs.									
Stem cell and founder zones in plants – particularly their roots – stem cells of shoot meristems of higher plants. UNIT–III Stem cell concept in animals Skem cell – Mammary stem cells – intestinal stem cells – keratinocyte stem cells of cornea – skin and hair follicles –Tumour stem cells, Embryonic stem cell biology - factors influencing proliferation and differentiation of stem cells – hormone role in differentiation. UNIT–IV 10 Hrs. Haemopoietic stem cell Biology – growth factors and the regulation of haemopoietic stem cells. Potential uses of stem cells Cellular therapies – vaccines – gene therapy – immunotherapy – tissue engineering –blood and bore marrow – Fc cells. Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regenerative Medicine, Artech House, INC Publications. 2. Lanza R et al.(2007), Principles of Tissue Engineering(3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to 1. Isolate and Culture of Hematopoietic Stem cells 2. Isolate and Culture of Mesenchymal Stem cells 3. Analyse Differentiation of Pluripotent stem cells 4. Int	Stem cell concept in plants											
plants. I0 Hrs. Stem cell concept in animals Skeletal muscle stem cell – Mammary stem cells – intestinal stem cells – keratinocyte stem cells of cornea – skin and hair follicles –Tumour stem cells, Embryonic stem cell biology - factors influencing proliferation and differentiation of stem cells – hormone role in differentiation. I0 Hrs. Mathematication of stem cells – hormone role in differentiation. UNIT-IV 10 Hrs. Haemopoietic stem cell Biology – growth factors and the regulation of haemopoietic stem cells. Potential uses of stem cells Cellular therapies – vaccines – gene therapy – immunotherapy – tissue engineering –blood and bone marrow – Fc cells. Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regenerative Medicine, Artech House, INC Publications. 2. Lanza R et al. (2007), Principles of Tissue Engineering (3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to 1. Isolate and Culture of Hematopoietic Stem cells 2. Isolate and Culture of Mesenchymal Stem cells 3. Analyse Differentiation of Pluripotent stem cells 4. Interpret Cell culture in Scaffolds 5.		in plants – particularly their roots – stem cells of s	hoot meristems of higher									
UNIT-III 10 Hrs. Stem cell concept in animals Skeletal muscle stem cell – Mammary stem cells – intestinal stem cells – keratinocyte stem cells of cornea – skin and hair follicles –Tumour stem cells, Embryonic stem cell biology - factors influencing proliferation and differentiation of stem cells – hormone role in differentiation. UNIT-IV 10 Hrs. Haemopoietic stem cell Numerous and the regulation of haemopoietic stem cells. Potential uses of stem cells Interse cells Cellular therapies – vaccines – gene therapy – immunotherapy – tissue engineering –blood and bone marrow – Fc cells. Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regenerative Medicine, Artech House, INC Publications. Interpret Cell Color), Principles of Tissue Engineering (3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to Isolate and Culture of Hematopoietic Stem cells 3. Analyse Differentiation of Pluripotent stem cells Interpret Cell culture in Scaffolds Interpret Cell culture in Scaffolds 5. Anayse growth of haemopoietic stem cells Scaffolds Scaffolds			0									
Skeletal muscle stem cell – Mammary stem cells – intestinal stem cells – keratinocyte stem cells of cornea – skin and hair follicles –Tumour stem cells, Embryonic stem cell biology - factors influencing proliferation and differentiation of stem cells – hormone role in differentiation. UNIT–IV 10 Hrs. Haemopoietic stem cell Biology – growth factors and the regulation of haemopoietic stem cells. Potential uses of stem cells Cellular therapies – vaccines – gene therapy – immunotherapy – tissue engineering –blood and bore marrow – Fc cells. Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regerrative Medicine, Artech House, INC Publications. Zenza R et al. (2007), Principles of Tissue Engineering (3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to Isolate and Culture of Hematopoietic Stem cells Second Stem cells 2. Isolate and Culture of Mesenchymal Stem cells Interpret Cell culture in Scaffolds Second Stem cells 3. Analyse Differentiation of Pluripotent stem cells Analyse growth of haemopoietic stem cells Second Stem cells	•	UNIT-III	10 Hrs.									
Skeletal muscle stem cell – Mammary stem cells – intestinal stem cells – keratinocyte stem cells of cornea – skin and hair follicles –Tumour stem cells, Embryonic stem cell biology - factors influencing proliferation and differentiation of stem cells – hormone role in differentiation. UNIT–IV 10 Hrs. Haemopoietic stem cell Biology – growth factors and the regulation of haemopoietic stem cells. Potential uses of stem cells Cellular therapies – vaccines – gene therapy – immunotherapy – tissue engineering –blood and bore marrow – Fc cells. Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regerrative Medicine, Artech House, INC Publications. Zenza R et al. (2007), Principles of Tissue Engineering (3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to Isolate and Culture of Hematopoietic Stem cells Second Stem cells 2. Isolate and Culture of Mesenchymal Stem cells Interpret Cell culture in Scaffolds Second Stem cells 3. Analyse Differentiation of Pluripotent stem cells Analyse growth of haemopoietic stem cells Second Stem cells	Stem cell concept in animals											
skin and hair follicles –Tumour stem cells, Embryonic stem cell biology - factors influencing proliferation and differentiation of stem cells – hormone role in differentiation. UNIT–IV 10 Hrs. Haemopoietic stem cell Biology – growth factors and the regulation of haemopoietic stem cells. Potential uses of stem cells Cellular therapies – vaccines – gene therapy – immunotherapy – tissue engineering –blood and bone marrow – Fc cells. Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regenerative Medicine, Artech House, INC Publications. 2. Lanza R et al. (2007), Principles of Tissue Engineering (3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to 1. Isolate and Culture of Hematopoietic Stem cells 2. Isolate and Culture of Mesenchymal Stem cells 3. Analyse Differentiation of Pluripotent stem cells 4. Interpret Cell culture in Scaffolds 5. Anayse growth of haemopoietic stem cells	•		ocyte stem cells of cornea –									
and differentiation of stem cells – hormone role in differentiation. International differentiation UNIT-IV 10 Hrs. Haemopoietic stem cell Biology – growth factors and the regulation of haemopoietic stem cells. Potential uses of stem cells Potential uses of stem cells Cellular therapies – vaccines – gene therapy – immunotherapy – tissue engineering –blood and bone marrow – Fc cells. Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regenerative Medicine, Artech House, INC Publications. 2. Lanza R et al. (2007), Principles of Tissue Engineering(3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to 1. Isolate and Culture of Hematopoietic Stem cells 2. Isolate and Culture of Mesenchymal Stem cells 3. Analyse Differentiation of Pluripotent stem cells 4. Interpret Cell culture in Scaffolds 5. Anayse growth of haemopoietic stem cells		•	-									
UNIT-IV 10 Hrs. Haemopoietic stem cell Biology – growth factors and the regulation of haemopoietic stem cells. Potential uses of stem cells Cellular therapies – vaccines – gene therapy – immunotherapy – tissue engineering –blood and bone marrow – Fc cells. Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regenerative Medicine, Artech House, INC Publications. 2. Lanza R et al. (2007), Principles of Tissue Engineering (3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to 1. Isolate and Culture of Hematopoietic Stem cells 2. Isolate and Culture of Mesenchymal Stem cells 3. Analyse Differentiation of Pluripotent stem cells 4. Interpret Cell culture in Scaffolds 5. Anayse growth of haemopoietic stem cells												
 Haemopoietic stem cell Biology – growth factors and the regulation of haemopoietic stem cells. Potential uses of stem cells Cellular therapies – vaccines – gene therapy – immunotherapy – tissue engineering –blood and bone marrow – Fc cells. Reference Books * Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regenerative Medicine, Artech House, INC Publications. Lanza R et al. (2007), Principles of Tissue Engineering (3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to Isolate and Culture of Hematopoietic Stem cells Isolate and Culture of Mesenchymal Stem cells Analyse Differentiation of Pluripotent stem cells Interpret Cell culture in Scaffolds Anayse growth of haemopoietic stem cells 												
Biology – growth factors and the regulation of haemopoietic stem cells. Potential uses of stem cells Cellular therapies – vaccines – gene therapy – immunotherapy – tissue engineering –blood and bone marrow – Fc cells. Reference Books * Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regenerative Medicine, Artech House, INC Publications. Lanza R et al.(2007), Principles of Tissue Engineering(3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to I. Isolate and Culture of Hematopoietic Stem cells Lisolate and Culture of Mesenchymal Stem cells Analyse Differentiation of Pluripotent stem cells Analyse growth of haemopoietic stem cells Anayse growth of haemopoietic stem cells	Haamanajatis stom coll											
Potential uses of stem cells Cellular therapies – vaccines – gene therapy – immunotherapy – tissue engineering –blood and bone marrow – Fc cells. Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regenerative Medicine, Artech House, INC Publications. 2. Lanza R et al.(2007), Principles of Tissue Engineering(3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to 1. Isolate and Culture of Hematopoietic Stem cells 2. Isolate and Culture of Mesenchymal Stem cells 3. Analyse Differentiation of Pluripotent stem cells 4. Interpret Cell culture in Scaffolds 5. Anayse growth of haemopoietic stem cells	-	the regulation of becomencipatic stom colls										
Cellular therapies – vaccines – gene therapy – immunotherapy – tissue engineering –blood and bone marrow – Fc cells. Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regenerative Medicine, Artech House, INC Publications. 2. Lanza R et al. (2007), Principles of Tissue Engineering(3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to 1. Isolate and Culture of Hematopoietic Stem cells 2. Isolate and Culture of Mesenchymal Stem cells 3. Analyse Differentiation of Pluripotent stem cells 4. Interpret Cell culture in Scaffolds 5. Anayse growth of haemopoietic stem cells	•. •	the regulation of haemopoletic stem cens.										
 marrow – Fc cells. Reference Books * Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regenerative Medicine, Artech House, INC Publications. Lanza R et al. (2007), Principles of Tissue Engineering (3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to Isolate and Culture of Hematopoietic Stem cells Isolate and Culture of Mesenchymal Stem cells Analyse Differentiation of Pluripotent stem cells Interpret Cell culture in Scaffolds Anayse growth of haemopoietic stem cells 		– gene therany – immunotherany – tissue engineeri	ng -blood and bone									
Reference Books * 1. Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regenerative Medicine, Artech House, INC Publications. 2. Lanza R et al.(2007), Principles of Tissue Engineering(3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to 1. Isolate and Culture of Hematopoietic Stem cells 2. Isolate and Culture of Mesenchymal Stem cells 3. Analyse Differentiation of Pluripotent stem cells 4. Interpret Cell culture in Scaffolds 5. Anayse growth of haemopoietic stem cells	-	– gene therapy – minunotherapy – tissue engineerii	ig –bioou and bolle									
 Mao J. J, Vunjak-NovakovicG (2008), Translational Approaches in Tissue Engineering & Regenerative Medicine, Artech House, INC Publications. Lanza R et al.(2007), Principles of Tissue Engineering(3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to Isolate and Culture of Hematopoietic Stem cells Isolate and Culture of Mesenchymal Stem cells Analyse Differentiation of Pluripotent stem cells Interpret Cell culture in Scaffolds Anayse growth of haemopoietic stem cells 		Reference Books *										
Medicine, Artech House, INC Publications. 2. Lanza R et al.(2007), Principles of Tissue Engineering(3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to 1. Isolate and Culture of Hematopoietic Stem cells 2. Isolate and Culture of Mesenchymal Stem cells 3. Analyse Differentiation of Pluripotent stem cells 4. Interpret Cell culture in Scaffolds 5. Anayse growth of haemopoietic stem cells												
 Lanza R et al.(2007), Principles of Tissue Engineering(3rd Edition), Academic Press. Course Outcomes** After completion of the course student will be able to Isolate and Culture of Hematopoietic Stem cells Isolate and Culture of Mesenchymal Stem cells Analyse Differentiation of Pluripotent stem cells Interpret Cell culture in Scaffolds Anayse growth of haemopoietic stem cells 			ineering & Regenerative									
Course Outcomes** After completion of the course student will be able to 1. Isolate and Culture of Hematopoietic Stem cells 2. Isolate and Culture of Mesenchymal Stem cells 3. Analyse Differentiation of Pluripotent stem cells 4. Interpret Cell culture in Scaffolds 5. Anayse growth of haemopoietic stem cells												
 After completion of the course student will be able to 1. Isolate and Culture of Hematopoietic Stem cells 2. Isolate and Culture of Mesenchymal Stem cells 3. Analyse Differentiation of Pluripotent stem cells 4. Interpret Cell culture in Scaffolds 5. Anayse growth of haemopoietic stem cells 	2. Lanza R et al.(2007), Pr	rinciples of Tissue Engineering(3rd Edition), Academ	ic Press.									
 Isolate and Culture of Hematopoietic Stem cells Isolate and Culture of Mesenchymal Stem cells Analyse Differentiation of Pluripotent stem cells Interpret Cell culture in Scaffolds Anayse growth of haemopoietic stem cells 	Course Outcomes**											
 Isolate and Culture of Mesenchymal Stem cells Analyse Differentiation of Pluripotent stem cells Interpret Cell culture in Scaffolds Anayse growth of haemopoietic stem cells 	After completion of the cour	se student will be able to										
 Analyse Differentiation of Pluripotent stem cells Interpret Cell culture in Scaffolds Anayse growth of haemopoietic stem cells 	1. Isolate and Culture of ⊢	lematopoietic Stem cells										
 Interpret Cell culture in Scaffolds Anayse growth of haemopoietic stem cells 	2. Isolate and Culture of N	Aesenchymal Stem cells										
5. Anayse growth of haemopoietic stem cells	3. Analyse Differentiation	of Pluripotent stem cells										
	4. Interpret Cell culture in	Scaffolds										
6. Apply the potential uses of stem cells	5. Anayse growth of haem	nopoietic stem cells										
	6. Apply the potential use	s of stem cells										

UBT525E

Credits: 03

*Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pr	ogra	mme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	-	-	-	-	-	-	-	-	-	-	1	1	2	2	2	
CO2	2	3	2	-	-	-	-	-	-	-	1	1	2	3	1	
CO3	2	3	2	1	-	-	-	-	-	-	-	1	3	3	1	
CO4	1	2	2	-	-	-	-	-	-	-	1	2	1	3	-	
CO5	1	3	2	2	-	-	-	-	-	-	-	1	2	3	1	
CO6	-	-	-	-	-	-	-	-	-	-	1	3	2	2	2	

UBT506H

L:T:P – 3:0:0 Total Hours/Week: 03 INDUSTRIAL SAFETY AND BIOETHICS

Credits: 03 CIE Marks: 50 SEE Marks: 50

UNIT-I	10 Hrs.
 Introduction to Bioethics & Biosafety Definition and scopeof bioethics and biosafety, Ethical implications and need for biosafety, Leg Economic impacts of Biotechnology. Convention on biological weapons. Bioterrorism-cla biological agents with examples. Biosafety regulation guidelines Recombinant DNA Advisory Committee (RDAC), Institutional Biosafety committee(IBC), Review C Genetic Modification (RCGM), Genetic Engineering Approval Committee(GEAC), Biosafety guidel guidelines, Cartagena Protocol on Biosafety. 	ossification of
UNIT–II	10 Hrs.
Biosafety Regulation: Genetically modified organisms and their release in environment, Laboratory associated infection hazards, Good Lab Practices and Good Manufacturing Process (GLP &GMP). Biosafet microorganismBL1,BL2,BL3,BL4) plants (BL1-P,BL2-P,BL3-P,BL4-P) animals (BL1-N,BL2-N,BL3-N,E Risk assessment during laboratory research and risk groups. Recombinant organisms and tran Guideline for labeling GM crops. Containments; Physical, Biological. Field trial methods usin plants.	ty levels for 3L4-N). nsgenic crops.
UNIT–III	10 Hrs.
Food and Pharma safety: Biosafety assessment procedures for biotech foods and Pharma products. Procedure to apply right, Plant Breeder's Right, Environmental aspects of biotech applications. Special application of in biotechnology and case studies. FlavrSavr Tomato as model case, case studies of relevance (Btbrinjal). Licensing and cross licensing.	of patent laws
UNIT–IV	10 Hrs.
HAACP system, Pharma safety. Food and safety act. Injuries by industrial sector.	
Reference Books *	
 Sateesh M.K.(2012),Bioethics and Biosafety,I.K.International Publication Singh B.D.(2010), Biotechnology Expanding Horizon(3rd revised edition), Kalyani Publisher <u>Goel D</u> and <u>Parashar</u> S (2010), IPR-Biosafety and Bioethics(2nd edition), Pearson Ec Publishers. 	
Course Outcomes**	
 After completion of the course student will be able to 1. Emphasize on the basic aspects of Biosafety and ethics; the key areas and apply the know social, legal & ethical issues connected with BT, BWC and Bioterrorism 2. Interpret & describe biosafety regulation guidelines committees. Cartagena protocol & the social statement is a second statement of the second statement o	-

2. Interpret & describe biosafety regulation guidelines committees, Cartagena protocol & their relevant

applications in BT

- 3. Identify biosafety levels as relevant to Biotechnology & apply this knowledge in maintenance of biosafety, GLP, GMP in research lab, field & industry.
- 4. Acquire working knowledge on the risk assessment, containment, GMO labeling and transgenic field trials in the research.
- 5. Identify the various forms of IPR and understand the importance of patents in modern scientific and industrial research and discuss special application of patent laws in biotechnology with case studies.
- 6. Identify & discuss the potential dangers in Biotechnology and gain knowledge on safety aspects in food and Pharma industry and apply precautionary measures to avoid /overcome it.

Course Outcomes				Pro	ograi	nme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	1	-	1	1	1	3	1	3	-	-	-	-	3	2	3	
CO2	1	-	1	2	1	2	1	2	-	3	-	-	3	1	1	
CO3	1	-	2	2	1	2	1	2	-	-	-	-	3	1	1	
CO4	1	-	1	2	3	3	1	2	-	2	-	-	3	2	1	
CO5	1	-	1	3	3	2	1	1	2	-	2	-	2	2	1	
CO6	1	-	2	2	1	3	1	1	-	-	-	-	2	2	1	

UBT514L L:T:P - 0:0:2 Total Hours/Week: 02 Credit: 01

CIE Marks: 50

SEE Marks: 50

	LIST OF EXPERIMENTS IN BIOINFORMATICS LABORATORY	28 Hrs.
1. Bibliographi	c search from PUBMED, SCIRUS and MEDMINER	
2. Sequence re	trieval from Nucleic acid and Protein databases.	
3. Sequence se	earches using BLAST – Retrieval of homologs, paralogs, orthologs, and Xenologs	
4. Pair wise co	mparison of sequences – Analysis of parameters affecting alignment.	
5. Multiple alig	gnments of sequences and pattern determination using PROSITE	
6. Evolutionary	y studies / Phylogenetic analysis – Analysis of parameters affecting trees.	
7. Identificatio	n of functional sites in Genes / Genomes.	
8. Secondary s	tructure prediction of proteins and comparison with PDB.	
9. Restriction r	napping: Analysis of maps for suitable molecular biology experiment.	
10. Primer Desi	gn: Factors affecting primer design.	
11. PDB structu	re retrieval and visualization: Analysis of homologous structures.	
12. Determinati	on of ligand-protein interactions using SPDBV/ LIGPLOT	
13. Superposition	on of structures – Calculation of RMSD.	
14. Docking stu	dies – Analysis of substrate / ligand binding using homologous structures	
	Reference Books *	
1. Bioinforma	atics – Andreas D Boxevanis. Wiley Interscience, 1998.	
2. Bioinforma	atics – David W Mount, cold spring harbor, 2001.	
	atics – A biologists guide to biocomputing and the internet. Stuart M brown,	
	tal Concepts of Bioinformatics – D E Krane & M L Raymer, Pearson, 2006.	
-	ional methods in Molecular Biology – S.L.Salzberg, D B Searls, S Kasif, Elsevier, 199	98.
	atics – methods and applications: Genomics, proteomics and drug Discovery – s c	
Rastogi, N	. mendiratta & prastogi, phi, 2006.	
	Course Outcomes**	
After completion	on of the course student will be able to	
	Search literature and sequence databases	
2. Ability to r	etrieve and search sequences from databases	
-	lign pair wise and multiple sequences	
	dentify evolutionary and relationships and functional sites in genomes	
-	evaluate primer designing and restriction mapping	
6. Ability to c	locking and superimpose the structures	
	be listed as per the format with decreasing level of coverage of syllabus to be written with proper action word and should be assessable and quantifiable	е

Course	Course Programme Outcomes Outcomes														Programme Specific Outcomes				
Outcomes	1	1 2 3 4 5 6 7 8 9 10 11 12										PSO1	PSO2	PSO3					
CO 1	3	3	3	-	3	1	-	3				3	3	3	1				
CO 2	3	3	3	-	3	1	-	-				3	2	3	1				
CO 3	3	3	2	2	3	1	1	-				3	3	3	1				
CO 4	3	3	2	-	3	-	1	-				3	2	3	2				
CO 5	3	3	2	1	3	1	-	2				3	3	3	2				
CO 6	3	3	3	2	3	1	-	1				3	2	3	1				

UBT515L		Credits: 01
L:T:P – 0:0:2	GENETIC ENGINEERING LABORATORY	CIE Marks: 50
Total Hours/Week: 02		SEE Marks: 50
LIST OF	EXPERIMENTS IN GENETIC ENGINEERING LABORAT	ORY
1. Transformation		
2. Blue white colony scree	ening	
3. Thermal denaturation of	of DNA	
4. Restriction Digestion		
5. Ligation Experiment.		
6. Southern Blotting – Aga	arose Gel Electrophoresis	
7. Electroblotting and ana	Ilysis	
8. Lyophilization of biolog	ic samples (fluids, microbial samples)	
9. SOP for UV-Spectropho	tometer	
10. SOP for PCR		
11. PCR (Amplification with	n specific primers)	
	Reference Books *	
1. Sambrook & Russell, (2	002), Molecular Cloning (3 rd Edition), Cold Spring H	arbor Lab.
2. Sadashiva and Manicka	m, (2017), Biochemical methods (2 nd Edition), W.H.	Freeman
	Course Outcomes**	
fter completion of the cours	e student will be able to	
7. Demonstrate proficiency	in Transformation and screening of transformants.	
	hermal denaturation to calculate Tm value.	
	ledge of restriction digestion and Ligation in the fiel	d of Biotechnology.
	in Electro-blotting and detection.	
11. Demonstrate understand	ing of SOP and PCR. on and advanced laboratory practices in Genetic eng	tingering lab
12. Gain Knowledge in Comm	on and advanced laboratory practices in deficit chi	

Course Outcomes				Pro	Program Specific Outcomes (PSOs)										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	3	3	-	3	1	1	3	-	-	-	3	3	3	1
CO2	-	3	3	-	3	1	1	-	-	-	-	3	2	3	1
CO3	-	3	2	2	3	1	1	-	-	-	-	3	3	3	1
CO4	-	3	2	-	3	-	1	-	-	-	-	3	2	3	2
CO5	-	3	2	1	3	1	1	2	-	-	-	3	3	3	2
CO6	-	3	3	2	3	1	1	1	-	-	-	3	2	3	1

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE DEPARTMENT OF BIOTECHNOLOGY SCHEME OF TEACHING AND EXAMINATION 2021-2022

VII SEMESTER

SI.	Subject	Cubicat Title		Н	ours/Week		Exa	minatio Marks	
No.	Code	Subject Title	Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1	UBT704C	Economics and Plant Design	3	3	0	0	50	50	100
2	UBT715C	Downstream Processing Technology	3	2	2	0	50	50	100
3	UBT72XE	Elective-4	3	3	0	0	50	50	100
4	UBT73XE	Elective-5	3	3	0	0	50	50	100
5	UBT716H	Industrial Management and Entrepreneurship	3	3	0	0	50	50	100
6	UBT733N	Industrial Safety (Open Elective)	3	3	0	0	50	50	100
7	UBT711I	Industrial Internship	2	0	0	4	50	50	100
8	UBT710L	Bioseparation Techniques Lab	1	0	0	2	50	50	100
9	UBT717L	Food Analysis Techniques Lab	1	0	0	2	50	50	100
10	UBT701T	Technical Seminar	1	2	0	0	50	50	100
		Total	23	19	02	8	500	500	1000

Elective-4

UBT722E: Aquaculture & Marine Biotechnology

UBT723E: Dairy Biotechnology

UBT724E: Food Processing Technology

UBT725E: Protein Engineering and Drug Design

Elective-5

UBT731E: Nanobiotechnology& Biomaterials

UBT732E: Computational Biology

UBT733E: Bioconjugative Technology

UBT734E: Food Biotechnology

UBT704C	

Total Hours/Week: 03

U	Ν	IT-	ł
-		••	

UNIT-II

10 Hours

10 Hrs.

Process design development

Design project procedure, design information from the literature and other sources of information, flow diagrams, preliminary design and equipment design and specialization, safety factors specifications, and materials of construction.

General design considerations

Marketability of the product, availability of technology, raw materials, human resources, land and utilities, site characteristics, plant location, plant layout, plant operation and control, utilities, storage, materials handling, materials and fabrication selection,.Waste disposal community factors. Safety and hazard control measures.

Capital investments

Fixed capital investments including land, building, equipment and utilities, installation costs, (including equipment, instrumentation, piping, electrical installation and other utilities), working capital investments.

Manufacturing costs And plant overheads

Manufacturing Costs: Direct Production costs (including raw materials, human resources, maintenance and repair, operating supplies, power and other utilities, royalties, etc.), fixed charges Plant Overheads: Administration, safety and other auxiliary services, Conceptual numerical.

UNIT-III 10 Hrs. Cost analysis Cost Analysis: Factors involved in project cost estimation, methods employed for the estimation of the capital investment. Estimation of working capital and

Depreciation: different type of depreciation methods of and calculations, Conceptual numerical.

UNIT–IV	10Hrs.
Profitability Analysis	
Methods for the evaluation of profitability. Return on original investment, interest rate of return	, Cash flow
diagrams. Break-even analysis. Conceptual numerical.	
Reference Books *	

- 1. Peters and Timmerhaus, Plant Design and Economics for Chemical Engineers, 5th Edition, McGraw Hill. 2017
- 2. Rudd and Watson (1987) Strategy of Process Engineering, Wiley.
- 3. Poornima M C, "Entrepreneurship Development and Small Business Enterprises", Pearson education, 2006
- 4. Vasanth Desai, "Dynamics of Entrepreneurial Development & Management", Himalaya Publishing House.4th Edition,2007.
- 5. Khanka SS, " Entrepreneurship Development, S Chand & Co. Revised edition, 2007.
- 6. Thomas W. Zimmer, Norman M. Scarborough, Essentials of Entrepreneurship and small Business Management, Pearson education, 5th Edition, 2008.

- 1. Acquire knowledge in the design of a plant.
- 2. Conduct preliminary feasibility study of the plant design assigned.

- 3. Estimate the cost analysis involved in the design of a chemical plant.
- 4. Analyze the project profitability and alternative investments for the selection of good investment projects
- 5. Develop entrepreneurs with substantial knowledge in engineering concepts.
- 6. Apply the knowledge of plant design and cost estimation in actual engineering problems.

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	-	-	-	-	-	2	-	-	1	-	3	-	-	1	3	
CO2	-	-	-	-	-	2	-	-	1	-	3	-	-	1	3	
CO3	-	-	-	-	-	2	-	-	1	-	3	-	-	1	3	
CO4	-	-	-	-	-	2	-	-	1	-	3	-	-	1	3	
CO5	-	-	-	-	-	2	-	-	1	-	3	-	-	1	3	
CO6	-	-	-	-	-	2	-	-	1	-	3	-	-	1	3	

UBT715C

L:T:P – 2:2:0

Total Hours/Week: 04

SEE Marks: 50

UNIT-I	10 Hours								
Introduction Role and importance of downstream processing in biotechnological processes. Range and characteristics of bioproducts. Purification process of bio-product. Cell disruption methods for intracellular products; physical, chemical and mechanical methods. Basic principles of distillation, crystallization, centrifugation, ultracentrifugation (preparative and analytical).Types of centrifuges and rotors, centrifugation-differential,density gradient (zonal and isopycnic). UNIT-II 10 Hrs.									
UNIT–II	10 Hrs.								
Primary Recovery Operations Process involved in liquid-liquid extraction, solid-liquid extraction, ammonium sulphate precipitation, Precipitation of proteins and nucleic acids by solvents and polyethylene glycol, dialysis, electrodialysis, ultrafiltration (Removal of insolubles by filtration), reverse osmosis, drying and lyophilization. Membrane based separations theory, design and configuration of membrane separation equipment.									
UNIT–III	10 Hrs.								
Chromatography Principles of chromatographic seperations, Classification of chromatography- plain and column chromatography, Paper chromatography - Single dimensional (Ascending and Descending, radial and two dimensional) chromatography, partition coefficient, retention factor, Thin layer chromatography, Gas liquid Chromatography, Adsorption Chromatography: Adsorption column chromatography, Ion Exchange Chromatography: cation Exchange and anion Exchange chromatography. Gel Filtration Chromatography, Affinity Chromatography, High Performance liquid chromatography, NP-HPLC and RP-HPLC.									
UNIT–IV	10Hrs.								
UNIT–IV Electrophoresis Electrophoresis principles, factors affecting electrophoresis mobility, Moving boundary electro Electrophoresis, Gel Electrophoresis, Continuous Gel electrophoresis, Disc Gel electrophoresis Electrophoresis, Capillary Electrophoresis,Cellulose Acetate, Starch Gel , Native and SDS-PAG electrophoresis, Isoelectric focusing, Immunoelectrophoresis, ELISA, Flow cytometry. Downstream Processes: Case studies (production)-DSP flowsheets for penicillin, insulin, amino acid, monoclonal antibo	ophoresis, Zone is, Agarose Gel iE, High voltage								
Electrophoresis Electrophoresis principles, factors affecting electrophoresis mobility, Moving boundary electro Electrophoresis, Gel Electrophoresis, Continuous Gel electrophoresis, Disc Gel electrophoresi Electrophoresis, Capillary Electrophoresis,Cellulose Acetate, Starch Gel, Native and SDS-PAG electrophoresis, Isoelectric focusing, Immunoelectrophoresis, ELISA, Flow cytometry. Downstream Processes:	ophoresis, Zone is, Agarose Gel iE, High voltage								
Electrophoresis Electrophoresis principles, factors affecting electrophoresis mobility, Moving boundary electro Electrophoresis, Gel Electrophoresis, Continuous Gel electrophoresis, Disc Gel electrophoresis Electrophoresis, Capillary Electrophoresis,Cellulose Acetate, Starch Gel , Native and SDS-PAG electrophoresis, Isoelectric focusing, Immunoelectrophoresis, ELISA, Flow cytometry. Downstream Processes: Case studies (production)-DSP flowsheets for penicillin, insulin, amino acid, monoclonal antibo Reference Books * 1. B.Sivasankar, Bioseparations-2010 Principles and techniques Kindle edition,PHI Publishe 2. Upadhay and Nath, 2010,Biophysical chemistry principles and Technques, Himalaya Pub 3 rd edition.	ophoresis, Zone is, Agarose Gel 5E, High voltage ody. ers, plishing House,								
 Electrophoresis Electrophoresis principles, factors affecting electrophoresis mobility, Moving boundary electrophoresis, Gel Electrophoresis, Continuous Gel electrophoresis, Disc Gel electrophoresis Electrophoresis, Capillary Electrophoresis, Cellulose Acetate, Starch Gel , Native and SDS-PAG electrophoresis, Isoelectric focusing, Immunoelectrophoresis, ELISA, Flow cytometry. Downstream Processes: Case studies (production)-DSP flowsheets for penicillin, insulin, amino acid, monoclonal antibo Reference Books * B.Sivasankar, Bioseparations-2010 Principles and techniques Kindle edition,PHI Publishee Upadhay and Nath, 2010,Biophysical chemistry principles and Technques, Himalaya Publishee P.A., Cussier E. and Wei ,Shan Hu. 2008. Bioseparations - Downstream processing for bis Belter, Wiley Interscience Pub, 	ophoresis, Zone is, Agarose Gel 6E, High voltage ody. ers, plishing House,								
 Electrophoresis Electrophoresis principles, factors affecting electrophoresis mobility, Moving boundary electrophoresis, Gel Electrophoresis, Continuous Gel electrophoresis, Disc Gel electrophoresis Electrophoresis, Capillary Electrophoresis, Cellulose Acetate, Starch Gel , Native and SDS-PAG electrophoresis, Isoelectric focusing, Immunoelectrophoresis, ELISA, Flow cytometry. Downstream Processes: Case studies (production)-DSP flowsheets for penicillin, insulin, amino acid, monoclonal antibo Reference Books * 1. B.Sivasankar, Bioseparations-2010 Principles and techniques Kindle edition,PHI Publishe 2. Upadhay and Nath, 2010,Biophysical chemistry principles and Technques, Himalaya Pub 3rd edition. 3. P.A., Cussier E. and Wei ,Shan Hu. 2008. Bioseparations - Downstream processing for bi Belter, Wiley Interscience Pub, 4. NPTEL Source material 	ophoresis, Zone is, Agarose Gel 6E, High voltage ody. ers, plishing House,								
 Electrophoresis Electrophoresis principles, factors affecting electrophoresis mobility, Moving boundary electrophoresis, Gel Electrophoresis, Continuous Gel electrophoresis, Disc Gel electrophoresis Electrophoresis, Capillary Electrophoresis, Cellulose Acetate, Starch Gel , Native and SDS-PAG electrophoresis, Isoelectric focusing, Immunoelectrophoresis, ELISA, Flow cytometry. Downstream Processes: Case studies (production)-DSP flowsheets for penicillin, insulin, amino acid, monoclonal antibo Reference Books * B.Sivasankar, Bioseparations-2010 Principles and techniques Kindle edition,PHI Publishe Upadhay and Nath, 2010,Biophysical chemistry principles and Technques, Himalaya Pub 3rd edition. P.A., Cussier E. and Wei ,Shan Hu. 2008. Bioseparations - Downstream processing for bi Belter, Wiley Interscience Pub, NPTEL Source material Palanivelu, 2005 Lab manual for separation Techniques. 	ophoresis, Zone is, Agarose Gel 6E, High voltage ody. ers, plishing House,								
 Electrophoresis Electrophoresis principles, factors affecting electrophoresis mobility, Moving boundary electrophoresis, Gel Electrophoresis, Continuous Gel electrophoresis, Disc Gel electrophoresis Electrophoresis, Capillary Electrophoresis, Cellulose Acetate, Starch Gel , Native and SDS-PAG electrophoresis, Isoelectric focusing, Immunoelectrophoresis, ELISA, Flow cytometry. Downstream Processes: Case studies (production)-DSP flowsheets for penicillin, insulin, amino acid, monoclonal antibo Reference Books * 1. B.Sivasankar, Bioseparations-2010 Principles and techniques Kindle edition,PHI Publishe 2. Upadhay and Nath, 2010,Biophysical chemistry principles and Technques, Himalaya Pub 3rd edition. 3. P.A., Cussier E. and Wei ,Shan Hu. 2008. Bioseparations - Downstream processing for bi Belter, Wiley Interscience Pub, 4. NPTEL Source material 	ophoresis, Zone is, Agarose Gel 5E, High voltage ody. ers, olishing House, iotechnology by								

- 2. Interpret and analyze the industrial fermentation processes.
- 3. Apply the knowledge in identifying various pharma and R&D sections.
- 4. Analyse the details of experimentation pertaining to chromatography and electrophoresis.
- 5. Understand analyse and apply the techniques in various tests involved in finding out purity of biological.
- **6.** Apply the knowledge in identifying various biochemicals using advanced purifications like HPLC and to demonstrate DSP flow sheets.

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	1	1	2	-	2	1	-	-	-	-	-	1	2	1	1	
CO2	2	-	2	-	3	2	-	-	-	-	-	1	2	1	1	
CO3	1	1	1	-	2	1	-	-	-	-	-	1	2	1	2	
CO4	2	-	2	-	2	2	-	-	-	-	-	1	2	1	1	
CO5	2	1	1	-	3	1	-	-	-	-	-	1	2	1	2	
CO6	1	-	1	-	2	1	-	-	-	-	-	2	2	1	1	

Total Hours/Week: 03

Credits: 03 CIE Marks: 50 SEE Marks: 50

10 Hours

11 Hrs.

12 Hrs.

9 Hrs.

Introduction

Constituents of food, soluble fibres, protein rich foods, popular fats and oils in foods, Food flavours, Browning reactions and its effects. Intrinsic and extrinsic parameters of foods, effect of inhibitors, pH and temperature.

UNIT-I

UNIT-II

UNIT-III

Minerals in foods. Aroma compounds in foods. Food additives, Vitamins, amino acids, Sweeteners, Food colours. Toxic-trace elements in food.

Detection of Microorganisms

Culture, Microscopic and Sampling Methods, Conventional; SPC, Membrane Filters, Microscope colony Counts, Agar Droplets, Dry Films, Most probable Numbers (MPN), Dyereduction, Roll Tubes, Direct Microscopic Count (DMC), Microbiological Examination of surfaces, Air Sampling, Metabolically Injured Organisms, Enumeration and Detection of Food-borne Organisms.

Dairy products

Composition of milk, Sterilization of milk (Pasteurization and UHT), Cheese production, Acidophilus milk Yoghurt, Kumiss and Kefir. Marketing scope of dairy & amp; food products Fruit and vegetable processing: Jam, jelly, Juice, squash, wine, pickles and sauerkraut.

Food Spoilage Preservation

The Role and Significance of Microorganisms, Primary Sources of Microorganisms found in Foods Synopsis of common borne bacteria, Molds; Yeasts. Microbial Spoilage of Vegetables, Fruits, Fresh and Processed Meats, Poultry, and Seafood. Spoilage of Miscellaneous Foods.

Food Preservation

Principles Underlying in spoilage and preservation, Application, Effect and Legal Status of Food Irradiation, Food Preservation with Low Temperatures, High Temperatures and Drying.

Food Industry

Characteristics of Food Industry. Nutritional food supplements. Food packaging, New trends in packing, edible films. Factors influencing food product development, marketing, and promotional strategies, risks and benefits of food industry.

Food Engineering

Properties of fluid foods, Measurement of rheological parameters .Thermal properties of frozen foods. Food freezing equipment, storage of frozen foods. Food dehydration: Freeze Dehydration Calculation of drying times. Food waste management.

Reference Books *

- 1. Sunetra Roady, 2007, Food Science & amp; Nutrition, Oxford University Press.
- 2. William Frazier and Westhoff D.C, 2005, Food microbiology 4th Edn, TATA McGraw Hill Pub

UNIT-IV

- 3. James M.Jay, 2005.Modern Food Micro-Biology, CBS Publishers.
- 4. K. Vijay Ramesh, 2007, Food Microbiology by MJP Publishers.
- 5. Potter N.N. and Joseph Hotchkiss, 1996, Food Science, 5th Edn, CBS Pub,

- 1. Ability to understand about basic constituents of food
- 2. Ability to analyse the techniques involved in detection of microbes in food industry
- 3. Ability to have idea about Dairy , fruits and vegetable processed products and production
- 4. Ability to be aware of different food spoilage and preservation techniques
- 5. Ability to analyse the Characteristics of food industry and scope
- 6. Ability to comprehend the concepts in food Engineering used in preservation.

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	1	1	2	-	2	1	-	-	-	-	-	1	2	1	1	
CO2	2	-	2	-	3	2	-	-	-	-	-	1	2	1	1	
CO3	1	1	1	-	2	2	-	-	-	-	-	1	2	1	2	
CO4	2	-	2	-	2	1	-	-	-	-	-	1	2	1	1	
CO5	2	1	1	-	3	1	-	-	-	-	-	1	2	1	2	
CO6	1	-	1	-	2	2	-	-	•	-	-	2	2	1	1	

UBT722E

L:T:P – 3:0:0

Total Hours/Week: 03

UNIT-I

10 Hours

Aquatic environment

Major physical and chemical factors (light, temperature, gases, nutrients). Aquatic biota: phytoplankton, zooplankton, benthos, periphyton, macrophytes, fish and other animals. Production & Nutrient dynamics in lakes, rivers, estuaries and wetlands. Eutrophication and water pollution: monitoring and control conservation and management of lakes, rivers and wetlands. Importance of coastal aquaculture- Design and construction of aqua farms, Criteria for selecting cultivable species. Culture systems – extensive, semi intensive and intensive culture practices

Aqua culture

Classification and Characteristics of Arthropoda. Crustacean characteristic key to important species of Prawns and Shrimps, General biology, of – Shrimp and Prawn, Finfish, Marine and freshwater fish. Preparation, culture and utilization of live food organisms, phytoplankton, zooplankton cultures, quality evaluation of Cyst, hatching and utilization, culture and cyst production.

UNIT–II

10 Hrs.

Aquaculture engineering and techniques

Principles and criteria for site selection; multi-design, layout plan for prawn, shrimp and fish hatchery; design, lay-out plan and pond construction for grow- out production, design and construction of feed mill and installation of machineries. Chromosome manipulation in aquaculture - hybridization, ploidy induction, gynogenesis, androgenesis and sex reversal in commercially important fishes. Application of microbial cycling. biotechnology culture ponds, bioaugmentation, bioremediation, nutrient and in biofertilization.Probiotics – imunostimulants. Tools for disease diagnosis in cultivable organisms Enzyme immuno assays - Dot immunobinding assay - Western blotting - Latex agglutination test - Monoclonal antibodies - DNA based diagnosis. Cryopreservation techniques.

UNIT–III		

10 Hrs.

Marine environment

Biological Oceanography: The division of the marine environment – benthing, pelagic, batuyal, littoral. Ocean waters as biological environment. Distribution and population of plants and animals. Marine ecology and fisheries potential. Effects of pollution on marine life. Geological and geophysical Oceanography: geophysical and geological processes. Ocean basin rocks and sediments.

Marine microbiology

Biology of micro-organisms used in genetic engineering (Escherichia coil, Rhizobium sp., Agrobacterium tumefaciens, Saccharomyces cerevisiae, phage lambda, Nostoc, Spirulina, Aspergillus, Pencillium and Streptomyces). Methods of studying the marine micro-organisms collection, enumeration, isolation, culture & identification based on morphological, physiological and biochemical characteristics. Preservation of marine microbes, culture collection centre (ATCC, IMTECH, etc.). Microbial nutrition and nitrogen fixation.Seafood microbiology - fish & human pathogens. Indicator of Pollution - faecai coliforms - Prevention & control.

UNIT–IV

10 Hrs.

Marine biotechnology and pharmacology

Physical, Chemical and Biological aspects of marine life. Air – Sea interaction – Green house gases (CO2 and Methane). Marine pollution-major pollutants (heavy metal, pesticide, oil, thermal, radioactive, plastics, litter and microbial). Biological indicators and accumulators: Protein as biomarkers, Biosensors and biochips. Biodegradation and Bioremediation. Separation, purification and bioremoval of pollutants. Biofouling - Biofilm formation, Antifouling and Anti boring treatments. Corrosion Process and control of marine structures.

Biosafety – special characteristics of marine environment that bear on biosafety. Ethical and moral issues food health, and environmental safety concerns. Medicinal compounds from marine flora and fauna - marine toxins –antiviral, antimicrobial. Extraction of crude drugs, screening, isolation, purification and structural characterization of bioactive compounds.

Reference Books *

- 1. Kirchman, D.L,. Microbial ecology of the oceans. Wiley liss, New York, 542 pp,2005
- 2. Kenneth, C. Hingham and Leonard Hill, 1969. The comparative endocrinology of the invertebrates. Edward Arnold Ltd.
- 3. Farming the edge of the sea. Fishing News Ltd. London.
- 4. Finger man, M.. Recent advances in Marine Biotechnology. Vol. 4,2000
- 5. Kenneth, B.D., 2000. Environmental impacts of Aquaculture. CRC. pp. 214,2000

- 1. Ability to understand the importance of coastal aquaculture.
- 2. Ability to know the different Culture systems.
- 3. To analyse the cryopreservation techniques.
- 4. To understand the Seafood microbiology.
- 5. To understand the applications of marine biology.
- 6. Ability to extract crude drugs and find the bioactive compounds.

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	1	-	2	-	1	1	2	2	-	-	-	1	2	1	1	
CO2	1	-	2	-	-	2	2	3	-	-	-	1	2	1	2	
CO3	-	-	1	1	2	-	2	2	-	-	-	1	2	1	-	
CO4	2	-	2	-	-	1	2	2	-	-	-	1	2	1	-	
CO5	-	-	1	2	2	-	3	3	-	-	-	1	2	1	1	
CO6	1	-	1	-	-	2	2	2	-	-	-	2	2	1	-	

UBT723E		Credits: 03
L:T:P – 3:0:0	DAIRY BIOTECHNOLOGY	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I

Dairy Industry and Microbiology

Overview of dairy industry, Characteristics of dairy Industry. Manufacturing & processing of dairy products, effect of processing on constituents and methods of evaluation of dairy products. Morphological and biochemical characteristics of important groups of milk microbes and their classification i.e.psychrotrophs, mesophiles, thermodurics, and thermophiles. Impact of various stages like milking, chilling, storage and transportation on microbial quality of milk, Direct and indirect rapid technique for assessment of microbial quality of milk. Food infection, intoxication and toxic infection caused by milk borne pathogens. Microbiological changes in bulk refrigerated raw milk; Mastitis milk: organisms causing mastitis, detection of somatic cell count (SCC). Role of microorganisms in spoilage of milk Significance of antimicrobial substances naturally present in milk (responsible for its nutraceutical properties): immunoglobulin, lactoferin, Lysozymes **UNIT–II**

Dairy biotechnology

Genetic engineering of bacteria and animals intended for dairy-based products: DNA cloning. protoplast fusion & cell culture methods for trait improvement with instances cited. Enzymes in dairy industry & production by whole cell immobilization. Biotechnology of dairy effluent treatment. Ethical issues relating to genetic modification of dairy microbes & milk-yielding animals.

Dairy engineering

Sanitization: Materials and sanitary features of the dairy equipment. Sanitary pipes and fittings, Description, working and maintenance of can washers, bottle washers. CIP cleaning and designing of system. Homogenization, Pasteurization, sterilization septic packaging and equipment. Filling Operation: Principles and working of different types of bottle filters and capping machine, pouch filling machine maintenance.

UNIT–III	10 Hrs.
Dairy process engineering	

Dairy process engineering

Evaporation: Basic principles of evaporators, Different types of evaporators used in dairy industry, Drying: Introduction to principle of drying, Equilibrium moisture constant, bound and unbound moisture. Fluidization Mechanization and equipment used in manufacture of indigenous dairy products, Butter and Ghee making machine, Ice-cream and Cheese making equipments. Membrane Processing: Ultra filtration, Reverse Osmosis and electro dialysis in dairy processing, membrane construction & maintenance for electro-dialysis & ultrafiltration, Ultra filtration of milk, Effect of milk constituents on operation.

Dairy plant design and layout

Introduction of Dairy Plant design and layout. Type of dairies, perishable nature of milk, reception flexibility. Classification of dairy plants, selection of site for location. Dairy building planning, Process schedule, basis of dairy layout, General points of considerations for designing dairy plant, floor plant types of layouts, service accommodation, single or multilevel design.

UNIT-IV

10 Hrs.

Quality and safety monitoring in dairy industry

Current awareness on quality and safety of dairy foods; consumer awareness and their demands for safe foods; role of codex alimentations commission (CAC) in harmonization of international standards; quality (ISO 9001:2000) and food safety (HACCP) system National and international food regulatory standards; their role in the formulation of standards for controlling the quality and safety of dairy foods. Good Hygiene Practices (GHP): Rapid assessment of dairy food for microbial and non-microbial contaminants Quality of water and Quality of air & personnel hygiene.

10 Hours

By products technology

Status, availability and utilization of dairy by-products in India and abroad, associated economic and pollution problems. Physico-chemical characteristics of whey, butter milk and ghee residue, by-products from skim milk such as Casein; Whey processing & utilization of products generated from whey.

Reference Books *

- 1. Diary Science & Technology Handbook (Vols. 1-3). Ed by Hui, Y.H, Wiley Publishers, 2007
- 2. Handbook of Farm, Dairy & Food Machinery Myer Kutz- Andrew Publishers, 2005
- 3. Diary Microbiology Handbook (3rd Ed). Robinson, R.K., Wiley Publishers, 2001
- 4. Comprehensive Biotechnology (Vol. 6) Ed N.C Gautam- Shree Pblns, 2002.
- 5. General Microbiology (Vol. 2) Powar & Daginawala- Himalaya Publishers, 2005
- 6. Milk composition, production & biotechnology (Biotechnology in Agriculture Series). CABI Publishers,2005

- 1. Able to manufacture & processing of dairy products.
- 2. Ability to know the ethical issues in dairy.
- 3. Ability to understand principles of evaporators.
- 4. Ability to plan the Plant design and layout.
- 5. will be aware of quality and safety of dairy foods.
- 6. Ability to know the regulatory standards.

Course Outcomes				Pro	ograi	nme	Out	com	es (P	Os)			-	ram Speo omes (PS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	-	2	-	1	1	2	2	-	-	-	1	2	1	1
CO2	1	-	2	-	-	2	2	3	-	-	-	1	2	1	2
CO3	-	-	1	1	2	-	2	2	-	-	-	1	2	1	-
CO4	2	-	2	-	-	1	2	2	-	-	-	1	2	1	-
CO5	-	-	1	2	2	-	3	3	-	-	-	1	2	1	1
CO6	1	-	1	-	-	2	2	2	-	-	-	2	2	1	-

Total Hours/Week: 03

UNIT-I

10 Hours

Structure of proteins

Overview of protein structure, PDB, structure based classification, databases, visualization tools, structure alignment, domain architecture databases, and protein-ligand interactions.

Protein structure prediction

Primary structure and its determination, secondary structure prediction and determination of motifs, profiles, patterns, fingerprints, super secondary structures, protein folding pathways, tertiary structure, quaternary structure, methods to determine tertiary and quaternary structure, post translational modification.

Protein engineering and design

Methods of protein isolation, purification and quantitation; large scale synthesis of proteins, design and synthesis of peptides, use of peptides in biology, methods of detection and analysis of proteins. Protein database analysis, methods to alter primary structure of proteins, examples of engineered proteins, protein design, principles and examples.

Molecular modeling

Constructing an Initial Model, Refining the Model, Manipulating the Model, Visualization. Structure Generation or Retrieval, Structure Visualization, Conformation Generation, Deriving Bioactive Conformations, Molecule Superposition and Alignment, Deriving the Pharmacophoric Pattern, Receptor Mapping, Estimating Biological Activities, Molecular Interactions: Docking, Calculation of Molecular Properties, Energy Calculations (no derivation), Examples of Small Molecular Modeling Work, Nicotinic Ligands, Sigma Ligands, Antimalarial Agents.

Insilico drug design

Generation of Rational Approaches in Drug Design, Molecular Modeling: The Second Generation, Conceptual Frame and Methodology of Molecular Modeling, The Field Currently Covered, Importance of the "Bioactive Conformation", Molecular Mimicry and Structural Similarities, Molecular Mimicry, Structural Similarities and Superimposition Techniques, Rational Drug Design and Chemical Intuition, An Important Key and the Role of the Molecular Model, Limitations of Chemical Intuition Major Milestones and Future Perspectives.

Computer assisted new lead design

Introduction, Basic Concepts, Molecular Recognition by Receptor and Ligand Design, Active Conformation, Approaches to Discover New Functions, Approaches to the Cases with known and unknown receptor structure.

UNIT-IV

Docking methods

Program GREEN Grid: Three -Dimensional Description of Binding Site Environment and Energy Calculation, Automatic Docking Method, Three-Dimensional Database Search Approaches, Automated Structure Construction Methods, Structure Construction Methods with known Three-Dimensional Structure of the Receptor, Structure Construction in the case of Unknown Receptor Structure. Scope and Limitations, Points for Consideration in Structure, Construction Methods, Handling of X-Ray Structures of Proteins, Future Perspectives, Types of programs available for molecular modeling-scope and limitations-interpretation of results.

Computer - assisted drug discovery

The Drug Development Process, Introduction, The Discovery and Development Process, New Lead Discovery

UNIT–III

UNIT-II

10 Hrs.

10 Hrs.

10 Hrs.

40.11

Strategies, Composition of Drug Discovery Teams, The Practice of Computer-Assisted Drug Discovery (CADD), Current Practice of CADD in the pharmaceutical Industry, Management Structures of CADD Groups, Contributions and Achievements of CADD Groups, Limitations of CADD Support, Inherent Limitations of CADD Support, State of Current Computational Models, Software and Hardware Constraints.

Reference Books *

- 1. Bioinformatics Methods & Applications: Genomics, Proteomics & Drug Discovery, S C Rastogi, Mendiratta & P Rastogi, PHI,4th Edition, 2013
- 2. Moody P.C.E. and A.J. Wilkinson Protein Engineering, IRL Press, Oxford, 3rd Edition, 2010.
- 3. Creighton T.E. Proteins, Freeman W.H. Second Edn, 1993.
- 4. Branden C. and Tooze R. Introduction of protein structure, Garland, 1993.
- 5. The molecular modeling perspective in drug design by N Claude Cohen, 2008, Academic Press.

- 1. Ability to study protein structure prediction and protein engineering and design
- 2. Able to understand molecular modeling
- 3. Able to know computer assisted new lead design
- 4. Able to study docking methods and computer assisted drug discovery

Course Outcomes	Programme Outcomes (POs)									-	Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	-	2	-	1	1	2	2	-	-	-	1	2	1	1
CO2	1	-	2	-	-	2	2	3	-	-	-	1	2	1	2
CO3	-	-	1	1	2	-	2	2	-	-	-	1	2	1	-
CO4	2	-	2	-	-	1	2	2	-	-	-	1	2	1	-

UBT	731E	

Total Hours/Week: 03

UNIT-I	10 Hrs.
UNIT-I ntroduction to nanotechnology: A Brief History of the Nano particles : Bottom-Up versus Top-Down; What Is Nanobiotechnology on nanofabrication, nanolithography, nanotubes, buckyballs, structure-property relationships materials characterization techniques, scanning electron, scanning tunneling and a microscopy(SEM,STM & AFM), biomolecule-surface interactions, quantum dots, Applications of nanotechnology in the life sciences: Buckyballs and Buckytubes, Diagnostics and Sensors, Drug Delivery Revenues Health Risks and Ch UNIT–II Biopolymers: Polymers as biomaterials, microstructure, mechanical properties – effects of environme moduli,sterilization and disinfections of polymeric materials. Biocompatibility of polymer modified glycosaminoglycans, heparin like substances from nonglycosaminoglycan polysac microbial glycosaminoglycan, surface immobilized heparins.	gy.Discussion in materials atomic force nallenge. 10 Hrs. nt on elastic rs, chemically
UNIT-III	10 Hrs.
Synthetic polymers: Polymers in biomedical use, polyethylene and polypropylene, perfluorinated polymers, acry nydrogels, polyurethanes, polyamides, biodegradable synthetic polymers, silicone ruk polymerization, micro-organisms in polymeric implants, polymer sterilization.	
UNIT-IV	10 Hrs.
Biocompatibility: Definition, Wound healing process-bone healing, tendon healing. Material response: I Degradation of materials in vivo. Host response: Tissue response to biomaterials . Testing Methods of test for biological performance-In vitro implant tests, In vivo implant test methods. Medical devices: Polyurethane elastomers, applications of polymers in medicine and surgery. Skin graft polymers, mplant materials, metals and alloys.	; of implants
Reference Books *	
 B.Vishwanath (2011). "Nano Materials" Published by Narosa Publishing House Pvt. Ltd., Net 2. Mark Ratner and Daniel Ratner (2003). "Nanotechnology: A Gentle Introduction to Net Pearson Ecducation Ltd. K Eric Drexler (1993). "Unbounding the future" Quill. Stephen Lee and Lynn M Savage (2010). "Biological molecules in Nanotechnology". 	
Course Outcomes**	
 After completion of the course student will have the Ability to explain the characterization techniques of nanotechnology. Ability to understand the importance of nano-particles in drug delivery system. Ability to understand the importance of biopolymers. Ability to differentiate biopolymer and synthetic polymer. Ability to understand the importance of biocompatibility. Ability to understand the importance of biocompatibility. 	

6. Ability to apply the methods to test the implants and use in medical devices.

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				Pro	ogran	nme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	3	3	-	-	1	2	-	-	-	-	-	2	2	1	
CO2	1	2	3	-	-	1	-	-	-	-	-	-	3	-	-	
CO3	2	2	3	-	-	2	-	-	-	-	-	-	2	2	1	
CO4	3	3	3	-	-	2	-	-	-	-	-	-	2	1	1	
CO5	3	3	3	-	-	1	-	-	-	-	-	1	2	-	-	
CO6	2	3	3	-		3	3	-	-	-		-	3	1	-	

Total Hoursy week. 05	SEE Marks. 50
UNIT-I	10 Hours
	10 10013
Introduction to computational biology and sequence analysis Molecular sequences, Genome sequencing: pipeline and data, Next generation s databases: Protein and Nucleotide databases, Sequence Alignment, Dynamic Progra distance and string similarity, Local and Global Alignment, Needleman Wunsch A Algorithm, BLAST family of programs, FASTA algorithm, Functional Annotation, Methods for Multiple sequence alignment, Applications.	amming for computing edit Igorithm, Smith Waterman
UNIT–II	10 Hrs.
 Phylogenetics Introduction to Phylogenetics, Distance and Character based methods for phylod UPGMA, Neighbour joining, Ultrametric and Min ultrametric trees, Parsimone Bootstrapping. Protein structure, modelling and simulations Protein Structure Basics, Visualization, Prediction of Secondary Structure and Ten Modeling, Structural Genomics, Molecular Docking principles and application 	ous trees, Additive trees,
simulations.	10 Hrs.
UNIT–III Machine learning, systems biology and other advanced topics	IU Hrs.
Machine learning techniques: Artificial Neural Networks and Hidden Markov Mod Secondary Structure Prediction and Gene Finding, Introduction toSystems Biology a cell modeling, Microarrays and Clustering techniques for microarray data analysi and Proteomics, DNA computing.	nd its applications in whole s, informatics in Genomics
UNIT–IV	10 Hrs.
Perl for bioinformatics Variables, Data types, control flow constructs, Pattern Matching, String manipulation File handling, Programs to handle biological data and parse output files for interprete Laboratory Demonstrations for Biological Databases, Sequence alignment: BLAST family of programs, FASTA, Clusta alignment, Phylogenetics software, Homology Modeling and Model evaluation, Auto Prokaryotic and Eukaryotic Gene finding software, Programs in PERL.	tation I W for multiple sequence
Reference Books *	
 David W. Mount Bioinformatics: Sequence and Genome Analysis, Cold Spring I Press, Second Edition, 2004. Arthur M. Lesk, Introduction to Bioinformatics by Oxford University Press, 200 Baldi, P., Brunak, S. Bioinformatics: The Machine Learning Approach, 2nd ed., Baxevanis A.D. and Oullette, B.F.F. A Practical Guide to the Analysis of Genes a John Wiley, 2002 Durbin, R. Eddy S., Krogh A., Mitchison G. Biological Sequence Analysis: Probal Models of Proteins and Nucleic Acids. Cambridge University Press, 1998. 	8. East West Press, 2003 and Proteins, 2nd ed.,
Course Outcomes**	
1. Ability to know the sequence analysis.	

COMPUTATIONAL BIOLOGY

Credits: 03

CIE Marks: 50

SEE Marks: 50

1. Ability to know the sequence analysis.

UBT732E L:T:P – 3:0:0

Total Hours/Week: 03

- 2. Ability to understand and analyze the multiple sequence alignment and applications.
- 3. Ability to understand the phylogenetics.
- 4. Ability to analyze the molecular dynamics simulations.
- 5. Ability to understand perl bioinformatics.
- 6. Ability to differentiate prokaryote and eukaryote gene finding software.

Course Outcomes				Pro	ogra	mme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	1	-	2	-	1	1	2	-	-	-	-	1	2	1	-	
CO2	1	-	2	-	-	2	2	-	-	-	-	1	2	1	-	
CO3	-	-	1	1	2	-	-	-	-	-	-	1	1	1	-	
CO4	2	-	2	-	-	1	2	-	-	-	-	1	-	1	-	
CO5	-	-	1	2	2	-	-	-	-	-	-	1		1	-	
CO6	1	-	1	-	-	2	2	-	-	-	-	2	2	1	-	

UBT733E	
L:T:P – 3:0:0	BIOCONJUGATIVE TECHNOLOGY
Total Hours/Week: 03	

UNIT-I	10 Hours
Bioconjugative technology Modification of Amino Acids, Peptides and Proteins – Modification of sugars, polysace glycoconjugates – modification of nucleic acids and oligonucleotides.	charides and
UNIT–II	10 Hrs.
Chemistry of active groups Amine reactive chemical reactions – Thiol reactive chemical reactions – carboxylate react reactions – hydroxyl reactive chemical reactions – aldehyde and ketone reactive chemical Photoreactive chemical reactions. Bioconjugate reagents	l reactions –
Zero length cross linkers – Homobifunctional cross linkers – Heterobifunctional cross linkers – cross linkers – Cleavable reagent systems – tags and probes.	Trifunctional
UNIT-III	10 Hrs.
Enzyme and nucleic acid modification and conjugation Properties of common enzymes – Activated enzymes for conjugation – biotinylated enzyme modification of nucleic acids – biotin labeling of DNA- enzyme conjugation to DNA – Fluorescent c	
UNIT–IV	10 Hrs.
Bioconjugate applications Preparation of Hapten-carrier Immunogen conjugates - antibody modification and conjugation – conjugation techniques – liposome conjugated and derivatives- Colloidal – gold-labelec modification with synthetic polymers.	
Reference Books *	
 Bioconjugate Techniques, G.T. Hermanson, Academic Press, 2 nd edition 2008 Bioconjugate techniques, Greg T Hermanson, academic Press, Global store, 2016 A Text book of biophysics by Dr R.N. Roy, UBS publishers, 2001 Bioconjugative Chemistry by Vincent M Rotello, American Chemical society, 2016 Bioconjugate techniques, Greg T Hermanson, academic Press, Global store, 2017 	
Course Outcomes**	
1. Able to understand modification of nucleic acids and oligonucleotides.	
2. Ability to know the chemistry of active groups.	
3. To analyse the bioconjugate reactants.	
4. To analyze bioconjugate applications.	
5. Ability to know the conjugate derivatives.	
6. Ability tostudy the conjugation process.	

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	1	-	2	-	1	1	2	1	-	-	-	1	2	1	1	
CO2	1	-	2	-	-	2	2	-	-	-	-	1	2	1	2	
CO3	-	-	1	1	2	-	2	-	-	-	-	1	2	1	-	
CO4	2	-	2	-	-	1	2	1	-	-	-	1	2	1	-	
CO5	-	-	1	2	2	-	3	1	-	-	-	1	2	1	1	
CO6	1	-	1	-	-	2	2	2	-	-	-	2	2	1	-	

UBT734E		Credits: 03
L:T:P – 3:0:0	FOOD BIOTECHNOLOGY	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50
	UNIT-I	10 Hours
Introduction		
technology. Recent Developme Novel bioprocessing Biosensors for food quality as industries. Nutrigenomics	d food needs-nutritional problems, approaches to co ents in food biotechnology, introduction to molecul ssessment, cold active enzymes in food processing rigenetics, and its applications, Nutritional genomic	ar food biotechnology. , biotransformation in food
Nutrigenetics and cancer.		
	UNIT–II	10 Hrs.
(enzymes, pigments). Bioto polysaccharides in foods, add fats. Food applications of a	roduction of food ingredients. Solid-state ferment echnology of microbial polysaccharides- natural litives (xanthan) and its future, Microbial biotechno Igae-nutritional value, source of neutraceuticals Agar, alginate). Genetics of Dairy starter cultures.	l occurrence of microbial logy of food flavor, oils and
r	UNIT-III	10 Hrs.
Genetic modifications of plant technology. Molecular biote nonnutritive sweeteners, me Engineering of provitamin-	provement, molecular design of soybean proteins starches, plant oils, for food applications. Bioproces chnology for neutraceutical enrichment of food tabolic redesign of vitamin -E biosynthesis, produ A ,biosynthetic pathway into rice(Golden rice), approaches to improve nutritional quality and shelf	ssing of starch using enzyme d crops, Biotechnology of uction of new metabolites, Engineering of carotenoid
	UNIT-IV	10 Hrs.
transformation, engineering c study. Animal food applications: Ge animals, applications of tra oligosaccharides-progress and Food safety: international a	rotein for ruminant animals. Methods of chloroplast chloroplast for the production of edible vaccine, Tr netic modification of production traits in farm anir nsgenic fish technology in sea food productio recent trends. spects of the quality and safety, genetically me enetic modified organisms, patenting inventions in for	ansplastomic maize- a case mals, Foods made from GM n, enzymatic synthesis of odified food controversies.
Reference Books *		
press, 2006 2. Gustavo F.G and Gustavo 3. Mahesh S" Plant Molec	, Anthony P and Robert E.Levin- "Food Biotechnold O V.B,-"Food Science and Food Biotechnology"- CRC cular Biotechnology"- first edition, New age internation Joseph H. Hotchkiss- Food Science- fifth edition	press, 2003 onal publishers, , 2008

- 1. Students will be able to know the importance and current status of food biotechnology
- 2. Students will acquire the knowledge on novel food bioprocessing, nutrigenomics in brief.
- 3. Explore the applications of microbes in food biotechnology, new sources of food from microbes etc
- 4. Will be able to learn about plant food biotechnology and transplastomic technology
- 5. Will get the knowledge on applications of Animal food biotechnology and food safety and its regulation
- 6. Able to have an overview recent trends in GMOs and food biotechnology

Course Outcomes				Pro	ogra	mme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	1	1	2	-	2	1	-	-	-	-	-	1	2	1	1
CO2	2	-	2	-	3	2	-	-	-	-	-	1	2	1	1
CO3	1	1	1	-	2	2	-	-	-	-	-	1	2	1	2
CO4	2	-	2	-	2	1	-	-	-	-	-	1	2	1	1
CO5	2	1	1	-	3	1	-	-	-	-	-	1	2	1	2
CO6	1	-	1	-	2	2	-	-	-	-	-	2	2	1	1

UBT716H

L:T:P – 3:0:0

Total Hours/Week: 03

INDUSTRIAL MANAGEMENT AND ENTREPRENEURSHIP

UNIT-I	12 Hrs.
Development of management thoughts and its functions	
Concept & definition of Management, Social Responsibilities of Management, and Pioneers in I Contributions of Taylor, Henry Taylor, Gilberth& Mayo, Schools of Management thought: process school, Empirical School, Human Behavior School, Social system school, Systems approa decision theory school. Selection of site for the plant and plant layout, plant operation and cor structural design, storage, material handling, Sources of capital. Definition and functions of a	Management ch school and ntrol, utilities,
Planning, organizing, staffing, directing and controlling. Concept of authority and responsibility.	10 Hrs.
Quantitative techniques in managerial decisions	101113.
Concept of productivity, measuring productivity, concept of budget, effective budgetary control, break even analysis, product life cycle, promotion of sales, pricing, "EOQ"model. Production costs raw materials, and repair, operating supplies, power and other utilities, royalties, etc.), fixed char depreciation, taxes, insurance, rental costs etc.).	s (including ges (including
UNIT–III	10 Hrs.
Production And Material Management Types of production, types of planning, manufacturing planning, factory planning, product method study, systems of wage payments, bonus, automation, organization of production Functions of purchasing & materials management, quality, quality standard & inspection, source pricing, principles & practices, Inventory management.	on, planning.
UNIT-IV	10 Hrs.
Entrepreneurship& personnel management Meaning of entrepreneur, evaluation of the concept, function of entrepreneur, entrepreneurship, development of entrepreneurship, stages in entrepreneurial process, role of e in economic development entrepreneurship- its barriers. Recruitment and selection. Training Employer - Employee relationship. Settlement of disputes. Reference Books *	entrepreneurs
 O.P. Khanna - "Industrial Engineering & Management", Dhanpat Rai & Sons, 1992. T. R. Banga & S. C. Sharma - "Industrial Engineering & Management Science", 6th. Edn, Khan Publications, 2003. C.B.Mamoria and S.V.Gankar- Personnel Management, Himalaya Pub, 21 st edn,2010 Veerabhadra Havinal -Management and Entrepreneurship- New Age International, 2009 Ramesh Burbure – Management &Entrepreneurship- Rohan Pub. 2008 Poornima M. Charanthimath – Entrepreneurship Development, Pearson Education-2005 	na
Course Outcomes**	
 After completion of the course student will be able to Recall and recollect the history theories and definition of management and its importance Analyze and apply the basic concepts of Quantitative techniques of management Know the difference between production and productivity, measurement and cost analysi Explore the knowledge of production costs, planning and material management Make basic economic analysis of project Understand the role and importance of entrepreneurship in economic development 	

Course Outcomes				Pro	Program Specific Outcomes (PSOs)										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	-	-	-	-	1	-	-	-	3	1	-	-	2
CO2	-	1	-	-	-	-	-	-	-	-	3	1	-	-	2
CO3	-	1	-	-	-	-	-	-	-	-	3	1	-	-	2
CO4	-	1	-	-	-	-	-	-	-	-	3	1	-	-	2
CO5	-	1	-	-	-	-	-	-	-	-	3	1	-	-	2
CO6	-	1	-	-	-	-	-	-	2	-	3	1	-	-	2

UBT733N		Credits: 03				
L:T:P – 3:0:0	INDUSTRIAL SAFETY	CIE Mai	rks: 50			
Total Hours/Week: 03		SEE Ma	rks: 50			
			40.11			
	UNIT-I		12 Hrs.			
conditions, factors contributir Accidents:	e of occupational health and safety, Health and ng to unsafe conditions, Good Lab Practices (GLP). nre, Measurement and control of safety perfor					
prevention- Engineering, Edu policy.	cation, Enthusiasm, Enforcement and Evaluation. H					
	on of chemicals based on their nature, routes to ex		nicals, Health			
	n the work environment, Control of chemical hazard UNIT-II	5.	10 Hrs.			
Electrical Hazards and Contro			10 11/2.			
formation, Fire extinguishing Physical Hazards and Control Noise, noise exposure regula radiation and non-ionizing radi	n against voltage fluctuations, effects of shock or agents. Evacuation procedures for workers during er measures: tion, properties of sound, Workers exposure to elect diations, effects of radiations, Classification of dange tion of dangerous materials by road, rail, ships and p	mergency condi ectromagnetic f rous materials v	tions. ield, Ionizing			
		inelines				
symbols, safety in transporta	UNIT–III	ipelines.	10 Hrs.			
Biological and Construction H Classification of Bio hazardo fungal, parasitic agents, infe hazardous waste disposal, Bio Construction Hazards:		nydial agents, s, Instructions	viral agents,			
Biological and Construction H Classification of Bio hazardo fungal, parasitic agents, infe hazardous waste disposal, Bio Construction Hazards:	UNIT–III Iazards and their control measures: bus agents –bacterial agents, rickettsial and chlar actious diseases –Hazardous material used in labs bhazard control program, Biological safety cabinets.	nydial agents, s, Instructions	viral agents,			
Biological and Construction H Classification of Bio hazardo fungal, parasitic agents, infe hazardous waste disposal, Bio Construction Hazards: Hazards in construction and s Occupational Health and Tox Classification of Occupationa etc. lead, nickel, chromium systemic and chronic effect Company policies.	UNIT–III Iazards and their control measures: ous agents –bacterial agents, rickettsial and chlar ectious diseases –Hazardous material used in labs ohazard control program, Biological safety cabinets. afety measures, Good Manufacturing Practices (GMI UNIT–IV	nydial agents, s, Instructions P). asbestosis, pnet Industrial toxic	viral agents, followed for 10 Hrs. umoconiosis, cology, local,			
Biological and Construction H Classification of Bio hazardo fungal, parasitic agents, infe hazardous waste disposal, Bio Construction Hazards: Hazards in construction and s Occupational Health and Tox Classification of Occupationa etc. lead, nickel, chromium systemic and chronic effect Company policies.	UNIT–III Iazards and their control measures: bus agents –bacterial agents, rickettsial and chlar ectious diseases –Hazardous material used in labs bhazard control program, Biological safety cabinets. afety measures, Good Manufacturing Practices (GMI UNIT–IV icology: I hazards, occupational related diseases- silicosis, a and manganese toxicity, effects and prevention	nydial agents, s, Instructions P). asbestosis, pnet Industrial toxic	viral agents, followed for 10 Hrs. umoconiosis, cology, local,			
Biological and Construction H Classification of Bio hazardo fungal, parasitic agents, infe hazardous waste disposal, Bio Construction Hazards: Hazards in construction and s Occupational Health and Tox Classification of Occupationa etc. lead, nickel, chromium systemic and chronic effect Company policies. Reference Books * 1. Kohn, (2007), Fundamen 2.	UNIT-III Iazards and their control measures: bus agents -bacterial agents, rickettsial and chlar ectious diseases -Hazardous material used in labs bhazard control program, Biological safety cabinets. afety measures, Good Manufacturing Practices (GMI UNIT-IV icology: I hazards, occupational related diseases- silicosis, a and manganese toxicity, effects and prevention is, temporary and cumulative effects. Industrial metals of Occupational Safety and Health The Scarecro F	nydial agents, s, Instructions P). Asbestosis, pneu Industrial toxic Hygiene. Varic Mark Friend w Press, Inc. Phil Hughes an	viral agents, followed for 10 Hrs. umoconiosis, cology, local, ous types of and James			
Biological and Construction H Classification of Bio hazardo fungal, parasitic agents, infe hazardous waste disposal, Bio Construction Hazards: Hazards in construction and s Occupational Health and Tox Classification of Occupationa etc. lead, nickel, chromium systemic and chronic effect Company policies. Reference Books * 1. Kohn, (2007), Fundamen 2. (2011), Introduction to H	UNIT–III Iazards and their control measures: bus agents –bacterial agents, rickettsial and chlar ectious diseases –Hazardous material used in labs bhazard control program, Biological safety cabinets. afety measures, Good Manufacturing Practices (GMI UNIT–IV icology: I hazards, occupational related diseases- silicosis, a and manganese toxicity, effects and prevention is, temporary and cumulative effects. Industrial	nydial agents, s, Instructions P). Asbestosis, pneu Industrial toxic Hygiene. Varic Mark Friend w Press, Inc. Phil Hughes an	viral agents, followed for 10 Hrs. umoconiosis, cology, local, ous types of and James			
Biological and Construction H Classification of Bio hazardo fungal, parasitic agents, infe hazardous waste disposal, Bio Construction Hazards: Hazards in construction and s Occupational Health and Tox Classification of Occupationa etc. lead, nickel, chromium systemic and chronic effect Company policies. Reference Books * 1. Kohn, (2007), Fundamen 2.	UNIT-III Iazards and their control measures: bus agents -bacterial agents, rickettsial and chlar ectious diseases -Hazardous material used in labs bhazard control program, Biological safety cabinets. afety measures, Good Manufacturing Practices (GMI UNIT-IV icology: I hazards, occupational related diseases- silicosis, a and manganese toxicity, effects and prevention is, temporary and cumulative effects. Industrial metals of Occupational Safety and Health The Scarecro F	nydial agents, s, Instructions P). Asbestosis, pneu Industrial toxic Hygiene. Varic Mark Friend w Press, Inc. Phil Hughes an	viral agents, followed for 10 Hrs. umoconiosis, cology, local, ous types of and James			

1. Apply the basic knowledge of Industrial hazards and safety.

- 2. Interpret & analyze the various types of accidents and chemical hazards.
- 3. Identify physical hazards and apply control measures in work place.

- 4. Acquire knowledge of electrical hazards and apply control measures in work place.
- 5. Identify various types of biological hazards and apply control measures.
- 6. Identify control measures and apply the knowledge in industrial toxicology and hygiene, occupational diseases in work place.

Course Outcomes				Pro		Program Specific Outcomes (PSOs)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	1	1	1	1	1	1	-	-	-	-	-	3	2	1
CO2	-	1	1	3	1	1	1	-	-	-	-	-	3	2	1
CO3	-	1	3	3	3	2	1	-	-	-	-	-	3	2	1
CO4	-	1	3	2	3	2	1	-	-	-	-	-	3	2	1
CO5	-	1	3	3	3	2	1	-	-	-	-	-	3	2	3
CO6	-	1	3	3	3	3	1	-	-	-	-	-	3	2	3

BIOSEPARATION TECHNIQUES LAB

Total Hours/Week: 02

LIST OF EXPERIMENTS IN BIOSEPARATION TECHNIQUES LABORATORY

- 1. Cell disruption techniques.
- 2. Solid-liquid separation methods: Filtration (Cross flow)
- 3. Solid-liquid separation methods: Sedimentation.
- 4. Solid-liquid separation methods: Centrifugation.
- 5. Membrane dialysis
- 6. Product enrichment operations: Precipitation (NH4)2 SO4 fractionation of a protein.
- 7. Product enrichment operations: Two phase aqueous extraction.
- 8. Product drying techniques.
- 9. Estimation of Amino acids / Carbohydrates by TLC.
- 10. Separation of ethanol from fermented broth.
- 11. Separation of Citric acid from fermented broth.
- 12. Separation of proteins by molecular sieving.
- 13. Analysis of biomolecules by HPLC / GC (using standard spectra).

Reference Books *

- 1. Scopes R.K., 1993. Protein Purification IRL Press
- 2. Bioseparations by Belter P.A. and Cussier E., Wiley, 1985.
- 3. Palanivelu. P, 2001, Analytical Biochemistry and Seperation Techniques, Kalaimani Publishers.

Course Outcomes**

After completion of the course student will be able to

- 1. Prepare/reproduce the protocols for the experiments.
- 2. Extract the intracellular product using different cell disruption techniques.
- 3. Concentrate, purify the desired product using different chromatography/filtration techniques.
- 4. Analyze the product both quantitative/qualitatively.
- 5. Record/observe the experimental data and interpret them in the graph/table.
- **6.** Calculate the result and to write the conclusion at the end of the experiment.

Course Outcomes				Program Specific Outcomes (PSOs)											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	1	-	3	-	-	-	-	-	-	1	1	1	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	3	-	1
CO3	-	2	-	-	-	-	-	-	-	-	-	-	-	3	1
CO4	-	-	3	-	-	-	-	-	-	-	-	-	2	2	1
CO5	-	-	-	3	3	-	-	-	-	-	-	-	2	2	1
CO6	-	3	-	-	-	-	-	-	-	-	-	2	2	3	1

UBT717L

Credit: 01 CIE Marks: 50 SEE Marks: 50

LIST OF EXPERIMENTS IN FOOD ANALYSIS TECHNIQUES LABORATORY

- 1. Proximate analysis of foods
- 2. Nutritional profiling of food samples for labeling (Carbohydrates, protein and fat)
- 3. Nutritional profiling of food samples for labeling (Vitamins and minerals)
- 4. Determination of calories in foods.
- 5. Determination of viscosity and texture of food sample
- 6. Detection of microbial load in processed food a sample
- 7. Extraction and detection of active ingredients in foods
- 8. Extraction of chitin, chitosan and glucosamine from prawn shells/mushrooms
- 9. Detection of Antioxidant property of Nutraceuticals
- 10. Sensory evaluation
- 11. Visit to NABL lab

Reference Books *

- 1. Food analyses by S Suzanne Nielsen, Fourth edition, Springer publisher, 2010
- 2. Food Regulation: Law, Science, Policy and Practice, N.D. Fortin, Wiley Publication, 2nd Edition, 2016
- 3. A Practical Guide to Food Laws and Regulations. Kiron Prabhakar, Bloomsbury Professional India, 1st Edition, 2016.
- 4. Food Safety and Standards Act and Regulations, Food Safety and Standards Authority of India, Ministry of Health and Family Welfare, Government of India, 2006

Course Outcomes**

After completion of the course student will be able to

- 1. Analyze different food samples for quality.
- 2. Evaluate food samples for quality.
- 3. Evaluate food samples for chemical and microbial safety.
- 4. Analyze the data for the acceptability of food sample

Course Outcomes				Pro		Program Specific Outcomes (PSOs)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	1	1	1	-	3	-	-	-	-	-	-	1	1	1	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	3	-	1
CO3	-	2	-	-	-	-	-	-	-	-	-	-	-	3	1
CO4	-	-	3	-	-	-	-	-	-	-	-	-	2	2	1